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FOREWORD 

INTRODUCTION 

This is one of a group of handbooks covering 
the engineering information and quantitative 
data needed in the design, development, construc- 

tion, and test of military equipment which (as a 
group) constitute the Army Materiel Command 

Engineering Design Handbook. 

PURPOSE OF HANDBOOK 

The Handbook on Experimental Statistics has 
been prepared as an aid to scientists and engi- 
neers engaged ill Army research and develop- 
ment programs, and especially as a guide and 
ready reference for military and civilian person- 
nel who have responsibility for the planning and 
interpretation of experiments and tests relating 
to the performance of Army equipment in the 
design and developmental stages of production. 

SCOPE AND USE OF HANDBOOK 

This Handbook is a collection of statistical 
procedures and tables.    It is  presented in five 

sections, viz: 

AMCT 706-110, Section 1, Basic Concepts 
and Analysis of Measurement Data (Chapters 

1-6) 

AMCT 706-111, Section 2, Analysis of Enu- 
merative and Classificatory Data (Chapters 
7-10) 

AMCP 706-112, Section 3, Planning and 
Analysis of Comparative Experiments (Chapters 
11-14) 

AMCP 706-113, Section 4, Special Topics 
(Chapters 15-23) 

AMCP 706-114, Section 5, Tables 

Section 1 provides an elementary introduc- 
tion to basic statistical concepts and furnishes 
full details on standard statistical techniques 
for the analysis and interpretation of measure- 

ment data. Section 2 provides detailed pro- 
cedures for the analysis and interpretation of 
enumerative and classificatory data. Section 3 
has to do with the planning and analysis of com- 
parative experiments. Section 4 is devoted to 
consideration and exemplification of a number 
of important but as yet non-standard statistical 
techniques, and to discussion of various other 
special topics. An index for the material in all 
four sections is placed at the end of Section 4. 
Section 5 contains all the mathematical tables 
needed for application of the procedures given 
in Sections 1 through 4. 

An understanding of a few basic statistical 
concepts, as given in Chapter 1, is necesssary; 
otherwise each of the first four sections is largely 
independent of the others. Each procedure, test, 
and technique described is illustrated by means 
of a worked example. A list of authoritative 
references is included, where appropriate, at the 
end of each chapter. Step-by-step instructions 
are given for attaining a stated goal, and the 
conditions under which a particular procedure is 
strictly valid are stated explicitly. An attempt is 
made to indicate the extent to which results ob- 
tained by a given procedure are valid to a good 
approximation when these conditions are not 
fully met. Alternative procedures are given for 
handling cases where the more standard proce- 
dures cannot be trusted to yield reliable results. 

The Handbook is intended for the user with 
an engineering background who, although he has 

an occasional need for statistical techniques, does 
not have the time or inclination to become an ex- 
pert on statistical theory and methodology. 

The Handbook has been written with three 
types of users in mind. The first is the person 
who has had a course or two in statistics, and 
who may even have had some practical experi- 
ence in applying statistical methods in the past, 
hut who does not have statistical ideas and tech- 
niques at his fingertips. For him. the Handbook 
will provide a ready reference source of once 
familiar ideas and techniques.    The second is the 



person wlio feels, or has b;H'ii advised, tfi.it some 

particular problem can be solved by means of 
fairly simple statistical techniques, and is in need 
of a book that will enable him to obtain the so- 
lution to his problem with a minimum of outside 
assistance. The Handbook should enable such a 
person to become familiar with the statistical 
ideas, and reasonably adept at the techniques, 
that are most fruitful in his particular line of re- 
search and development work. Finally, there is 
the individual who, as the head of, or as a mem- 
ber of a service group, has responsibility for ana- 
lyzing and interpreting experimental and test 

data brought in by scientists and engineers en- 
gaged in Army research and development work. 
This individual needs a ready source of model 
work sheets and worked examples corresponding 
to the more common applications of statistics, to 
free him from the need of translating textbook 

discussions into step-by-step procedures that can 
be followed by individuals having little or no 

previous experience with statistical methods. 

Tt is with this last need in mind that some 
of the procedures included in the Handbook have 
been explained and illustrated in detail twice: 
once for the case where the important question 
is whether the performance of a new material, 
product, or process exceeds an established stan- 
dard; and again for the case where the important 
question is whether its performance is not up to 
the specified standards. Small but serious errors 
are often made in changing "greater than" pro- 
cedures into "less than" procedures. 
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PREFACE 

This listing is a guide to the Section and Chapter subject coverage in all Sections of the Hand- 
book on Experimental Statistics. 

Chapter Title 

No. 

AMCP 706-110 (SECTION 1) — BASIC STATISTICAL CONCEPTS AND 
STANDARD TECHNIQUES  FOR ANALYSIS AND  INTERPRETATION  OF 

MEASUREMENT DATA 

1 —Some Basic Statistical Concepts and Preliminary Considerations 
2 — Characterizing the Measured Performance of a Material, Product, or Process 
•'i — Comparing Materials or Products with Respect to Average Performance 
4— Comparing Materials or Products with Respect to Variability of Performance 
5 — Characterizing Linear Relationships Between Two Variables 
(i — Polynomial and Multivariable Relationships, Analysis by the Method of Least Squares 

AMCP 706-111 (SECTION 2) —ANALYSIS OF ENUMERATIVE AND 
CLASSIFICATORY DATA 

7— Characterizing the Qualitative Performance of a Material, Product, or Process 
8 — Comparing  Materials or  Products  with  Respect to a Two-Fold  Classification of  Performance 

(Comparing Two Percentages) 

9 — Comparing Materials or Products with Respect to Several Categories of Performance (Chi-Square 
Tests) 

10 — Sensitivity Testing 

AMCP 706-112 (SECTION 3) —THE PLANNING AND ANALYSIS OF 
COMPARATIVE EXPERIMENTS 

11 — General Considerations in Planning Experiments 
12 — Factorial Experiments 
13 — Randomized Blocks, Latin Squares, and Other Special-Purpose Designs 
14 — Experiments to Determine Optimum Conditions or Levels 

AMCP 706-113 (SECTION 4) — SPECIAL TOPICS 

If) — Some ''Short-Cut" Tests for Small Samples from Xormal Populations 
16 — Some Tests Which Are Independent of the Fo.-m of the Distribution 
17 — The Treatment of Outliers 

15 — The Place of Control Charts in Experimental Work 
19 — Statistical Techniques for Analyzing Extreme-Value Data 
20 — The Use of Transformations 
21 — The Relation Between Confidence Intervals and Tests of Significance 
22 — Notes on Statistical Computations 
23 — Expression of the Uncertainties of Final Results 
Index 

AMCP 706-114 (SECTION 5) — TABLES 

Tables A-1 through A-37 
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CHAPTER  15 

SOME SHORTCUT TESTS FOR SMALL SAMPLES 

FROM NORMAL POPULATIONS 

15-1     GENERAL 

Shortcut tests are characterized by their simplicity. The calculations are simple, and often may 
be done on a slide rule. Further, they are easily learned. An additional advantage in their use 
is that their simplicity implies fewer errors, and this may be important where time spent in checking 
is costly. 

The main disadvantage of the shortcut tests as compared to the tests given in AMCP 706-110, 
Chapters 3 and 4, is that with the same values of a and n, the shortcut test will, in general, have a 
larger ß, — i.e., it will result in a higher proportion of errors of the second kind. For the tests 
given in this chapter, this increase in error will usually be rather small if the sample sizes involved 
are each of the order of 10 or less. 

Unlike the nonparametric tests of Chapter 16, these tests require the assumption of normality of 
the underlying populations. Small departures from normality, however, will usually have a 
negligible effect on the test — i.e., the values of a and ß, in general, will differ from their intended 
values by only a slight amount. 

No descriptions of the operating characteristics of the tests or of methods of determining sample 
size are given in this chapter. 

15-2    COMPARING THE AVERAGE OF A NEW PRODUCT WITH THAT 
OF A STANDARD 

15-2.1     DOES THE AVERAGE OF THE NEW PRODUCT DIFFER FROM THE STANDARD? 

Data Sample 15-2.1 —Depth of Penetration 

Ten rounds of a new type of shell are fired into a target, and the depth of penetration is measured 
for each round.    The depths of penetration are: 

10.0, 9.8, 10.2, 10.5, 11.4, 10.8, 9.8, 12.2, 11.6, 9.9 cms. 

The average penetration depth, m0, of the standard comparable shell is 10.0 cm. 

15-1 



SHORTCUT TESTS 

The question to be answered is:  Does the new type differ from the standard type with respect 
to average penetration depth (either a decrease, or an increase, being of interest)? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ipi-cn in Table A-12 for the appro- 
priate n. 

(3) Compute X, the mean of the n observa- 
tions. 

(4) Compute w, the difference between the 
largest and smallest of the n observations. 

(5) Compute <p = (X — m0)/w 

(6) If \<p\ > ipi-aj2, conclude that the average 
performance of the new product differs 
from that of the standard; otherwise, there 
is no reason to believe that they differ. 

Example 

(1) Let a = .01 

(2) n = 10 
P.»95 = 0.333 

(3) X = 10.62 

(4) 

(5) 

w = 2.4 

10.62 - 10.00 
2.4 

= 0.258 

(6) Since 0.258 is not larger than 0.333, there 
is no reason to believe that the new type 
shell differs from the standard. 

15-2.2    DOES THE AVERAGE OF THE NEW PRODUCT EXCEED THE STANDARD? 

In terms of Data Sample 15-2.1, let us suppose that — in advance of looking at the data — the 
important question is:  Does the average of the new type exceed that of the standard? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up <pi-a in Table A-12, for the appro- 
priate n. 

(3) Compute X, the mean of the n observa- 
tions. 

(4) Compute w, the difference between the 
largest and smallest of the n observations. 

(5) Compute <p = (X — mn)/w 

(6) If <p > <£>!_„, conclude that the average of 
the new product exceeds that of the stand- 
ard ; otherwise, there is no reason to believe 
that the average of the new product 
exceeds the standard. 

Example 

(1) Let a = .01 

(2) n = 10 
^.99    ~   Ü.Z88 

(3) X = 10.62 

(4) 

(5) 

w = 2.4 

10.62 - 10.00 
ip = 

2.4 

= 0.258 

(6) Since 0.258 is not larger than 0.288, there 
is no reason to believe that the average of 
the new type exceeds that of the standard. 

15-2 



COMPARING AVERAGE PERFORMANCE 

15-2.3    IS THE AVERAGE OF THE NEW PRODUCT LESS THAN THE STANDARD? 

In terms of Data Sample 15-2.1, let us suppose that — in advance of looking at the data — the 
important question is:  Is the average of the new type less than that of the standard? 

Procedure Example 

(1)   Choose a, the significance level of the test.       (1)   Let a = .01 

(2)   Look up <p^a in Table A-12, for the appro-       (2) n = 10 
priate n. <p.99 = 0.288 

(3)   Compute X, the mean of the n observa-       (3) X = 10.62 
tions. 

(4)   Compute w, the difference between the       (4) w = 2.4 
largest and smallest of the n observations. 

(5)   Compute <p = (win — X)/w (5) 10.00 - 10.62 
v~ 2Ä 

= - 0.258 

(6)   If <p > <pi-a, conclude that the average of (6)   Since   - 0.258 is not larger than 0.288, 
the new product is less than that of the there  is  no  reason  to  believe  that  the 
standard; otherwise, there is no reason to average of the new type is less than that of 
believe that the average of the new product the standard, 
is less than that of the standard. 

15-3 



SHORTCUT TESTS 

15-3    COMPARING THE AVERAGES OF TWO PRODUCTS 

15-3.1     DO THE PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE? 

Data Sample 15-3.1 —Capacity of Batteries 

Form:  A set of n measurements is available from each of two materials or products.    The proce- 
dure* given requires that both sets contain the same number of measurements (i.e., nA = n„ = n). 

Example:  There are available two independent sets of measurements of battery capacity. 

Set A Set B 

138 140 
143 141 
136 139 
141 143 
140 138 
142 140 
142 142 
146 139 
137 141 
135 138 

Procedure Example 

(1) Choose a, the significance level of the test. (1)   Let a = .01 

(2) Look up <pi_«,/2 in Table A-13, for the appro- (2) n = 10 
priate n.                                                                       v'.ws = 0.419 

(3) Compute X,, X», the means of the two (3)       X, = 140.0 
samples. XH = 140.1 

(4) Compute ivA , wB, the ranges (or difference (4)       wA = 146 — 135 
between the largest and smallest values) =11 
for each sample. wH = 143 — 138 

= 5 

.„   n ,n 140.0 - 140.1 
(5) Compute (5) <p   = 5  

o 

/ = JL^IÄJL„ = - 0.0125 
3 («'-I  + WB) 

(6) If \<p'\ > (/>'i-a/2, conclude that the aver- (6) Since 0.0125 is not larger than 0.419, 
ages of the two products differ; otherwise, there is no reason to believe that the 
there is no reason to believe that the average of A differs from the average of B. 
averages of A and B differ. 

* This procedure is not appropriate when the observations are "paired", i.e., when each measurement from A is 
associated with a corresponding measurement from B (see Paragraph 3-3.1.4). In the paired observation case, the 
question may be answered by the following procedure: compute K,i as shown in Paragraph 3-3.1.4 and follow the 
procedure of Paragraph 15-2.1, using X = X,i and m0 = 0 . 
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COMPARING AVERAGE PERFORMANCE 

15-3.2    DOES THE AVERAGE OF PRODUCT A EXCEED THE AVERAGE OF PRODUCT B? 

In terms of Data Sample 15-3.1, let us suppose that — in advance of looking at the data — the 
important question is:  Does the average of A exceed the average of B? 

Again, as in Paragraph 15-3.1, the procedure is appropriate when two independent sets of 
measurements are available, each containing the same number of observations (nA = ntt = n), 
but is not appropriate when the observations are paired (see Paragraph 3-3.1.4). In_the paired 
observation case, the question may be answered by the following procedure: compute Xd as shown 
in Paragraph 3-3.2.4, and follow the procedure of Paragraph 15-2.2, using X = Xd and m0 = 0. 

Procedure Example 

(1)   Choose a, the significance level of the test.       (1)   Let a = .05 

(2)   Look up ,p'1_0 in Table A-13, for the appro-       (2) n = 10 
priate n. ^!96 = .250 

(3)   Compute XA , X,,, the means of the two       (3)       XA = 140.0 
samples. XB = 140.1 

(4)   Compute wA , wB, the ranges (or difference       (4)       wA = 11 
between the largest and smallest values) WB = 5 
for each sample. 

(5)   Compute (5) 140.0 - 140.1 

XA - XB = - 0.0125 
J (lVA + WB) 

(6)   If <p' > <f>'x^a, conclude that the average of (6)   Since  - 0.0125 is not larger than 0.250, 
A exceeds that of B; otherwise, there is no there  is  no  reason  to  believe  that  the 
reason to believe that the average of A average of A exceeds the average of B. 
exceeds that of B. 
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SHORTCUT TESTS 

15-4    COMPARING THE AVERAGES OF SEVERAL PRODUCTS 
DO THE AVERAGES OF / PRODUCTS DIFFER? 

Data Sample 15-4—Breaking-Strength of Cement Briquettes 

The following data relate to breaking-strength of cement briquettes (in pounds per square 
inch). 

Group 

4 1 2     j    3 5 

518 508 554    l   555 536 
560 574 598    i   567 492 
538 . 528 579        550 528 
510 534 538        535 572 
544 538 544        540 506 

sz,- 2670 2682 2813 2747 2634 
11; 5 5 5 5 5 

x< 534.0 536.4 562.6   |   549.4 526.8 

Excerpted with permission from Statistical Exercises, "Part II, Analysis of Variance and Associated Techniques," by N. L. Johnson, Copyright, 
19f)7, Department of Statistics, University College, London. 

The question to be answered is:   Does the average breaking-strength differ for the different 
groups? 

Procedure Example 

(1)   Choose a, the significance level of the test.       (1)   Let a = .01 

(2) Look up La in Table A-15, corresponding       (2) 
to t and n. 
n = ni = n-i = . . . = nt, the number of 
observations on each product. 

(3) Compute i«i ,iv2,. . . , wt, the ranges of the       (3) 
n observations from each product. 

(4)   Compute X,, X2, ■ ■ ■ , X,, the means of       (4) 
the observations from each product. 

(5)   Compute w' = u\ + iv2 + . . . + w,. (5) 
Compute w", the difference between the 
largest and the smallest of the means X;. 

t = 5 
n = 5 

La = 1.02 

uh = 50 
w'2 = 66 

UH = 60 
iv.s = 32 
Wt = 80 

Xt = 534.0 
X2 = 536.4 
X, = 562.6 
X, = 549.4 
Xb = 526.8 

w' = 288 
w" = 562.6 - 526. 

= 35.8 
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COMPARING VARIABILITY OF PERFORMANCE 

Procedure (Cont) 

(6) Compute L = nw"/w' 

(7) If L > La, conclude that the averages of 
the t products differ; otherwise, there is no 
reason to believe that the averages differ. 

Example (Cont) 

(6) L = 179/288 
= 0.62 

(7)   Since L is less than La, there is no reason to 
believe that the group averages differ. 

15-5    COMPARING TWO PRODUCTS WITH  RESPECT TO VARIABILITY 
OF PERFORMANCE 

15-5.1     DOES THE VARIABILITY OF PRODUCT A DIFFER FROM THAT OF PRODUCT B? 

The data of Data Sample 15-3.1 are used to illustrate the procedure. 
The question to be answered is:  Does the variability of A differ from the variability of B? 

Procedure Example 

(1)   Choose a, the significance level of the test.       (1)   Let a = .01 

(2)   Look up Fa/i (w.t, nB) and 
F'l-an (nA , «») in Table A-ll*. 

(2) nA = 10 
nH  = 10 

F'jm (10, 10) = .37 
F'^b (10, 10) = 2.7 

(3) Compute w.i, wH , the ranges (or difference 
between the largest and smallest observa- 
tions) for A and B, respectively. 

(3) W.i 

It'll 

11 
5 

(4)   Compute F' = wA/w. (4) F' = 11/5 
= 2.2 

(5)   If F' < FL;o (nA , tin) or 
F' > Fl-a,-, (w.i, Tin), conclude that the 
variability in performance differs; other- 
wise, there is no reason to believe that the 
variability differs. 

(5) Since F' is not less than .37 and is not 
greater than 2.7, there is no reason to 
believe that the variability differs. 

* When using Table A-ll, sample sizes need not be equal, but cannot be larger than 10. 
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SHORTCUT TESTS 

15-5.2    DOES THE VARIABILITY OF PRODUCT A EXCEED THAT OF PRODUCT B? 

In terms of Data Sample 15-3.1, the question to be answered is: Does the variability of A exceed 
the variability of B? 

Procedure Example 

(1) Choose a, the significance level of the test. 

(2) Look up *",_« (n,, n„) in Table A-ll*. 

(3) Compute wA , w„, the ranges (or difference 
between the largest and smallest observa- 
tions) for A and B, respectively. 

(4) Compute F' = wA/wH 

(5) If F' > Fi-a (nA, nH), conclude that the 
variability in performance of A exceeds the 
variability in performance of B; otherwise, 
there is no reason to believe that the vari- 
ability in performance of A exceeds that of 
B. 

(1)   Let 

(2) 

.01 

n.i = 10 
nB = 10 

F!99 (10, 10) = 2.4 

(3) wA = 11 
ICB = 5 

(4) F' = 11/5 
= 2.2 

(5) Since F' is not larger than F'M, there is no 
reason to believe that the variability of set 
A exceeds that of set B. 

* When using Table A-ll, sample sizes need not be equal, but cannot be larger than 10. 
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CHAPTER  16 

SOME TESTS WHICH ARE INDEPENDENT OF THE FORM OF 

THE DISTRIBUTION 

16-1     GENERAL 

This chapter outlines a number of test procedures in which very little is assumed about the 
nature of the population distributions. In particular, the population distributions are not assumed 
to be "normal". These tests are often called "nonparametric" tests. The assumptions made 
here are that the individual observations are independent* and that all observations on a given 
material (product, or process) have the same underlying distribution. The procedures are strictly 
correct only if the underlying distribution is continuous, and suitable warnings in this regard are 
given in each test procedure. 

In this chapter, the same wording is used for the problems as was used in AMCP 706-110,Chapter 3 
(e.g., "Does the average differ from a standard?"), because the general import of the questions is the 
same.    The specific tests employed, however, are fundamentally different. 

If the underlying populations are indeed normal, these tests are poorer than the ones given in 
Chapter 3, in the sense that ß, the probability of the second kind of error, is always larger for given 
a and n. For some other distributions, however, the nonparametric tests actually may have a 
smaller error of the second kind. The increase in the second kind of error, when nonparametric 
tests are applied to normal data, is surprisingly small and is an indication that these tests should 
receive more use. 

Operating characteristic curves and methods of obtaining sample sizes are not given for these 
tests. Roughly speaking, most of the tests of this chapter require a sample size about 1.1 times that 
required by the tests given in Chapter 3 (see Paragraphs 3-2 and 3-3 for appropriate normal sample 
size formulas). For the sign test (Paragraphs 16-2.1, 16-3.1, 16-4.1, 16-5.1, and 16-6.1), a factor 
of 1.2 is more appropriate. 

For the problem of comparing with a standard (Paragraphs 16-2, 16-3, and 16-4), two methods 
of solution are given and the choice may be made by the user. The sign test (Paragraphs 16-2.1, 
16-3.1, and 16-4.1) is a very simple test which is useful under very general conditions. The Wil- 
coxon signed-ranks test (Paragraphs 16-2.2, 16-3.2, and 16-4.2) requires the assumption that the 
underlying distribution is symmetrical. When the assumption of symmetry can be made, the 
signed-ranks test is a more powerful test than the sign test, and is not very burdensome for fairly 
small samples. 

For the problem of comparing two products (Paragraphs 16-5 and 16-6), two methods of solution 
are also given, but each applies to a specific situation with regard to the source of the data. 

The procedures of this chapter assume that the pertinent question has been chosen before taking 
the observations. 

* Except for certain techniques which are given for "paired observations"; in that case, the pairs are assumed to be 
independent. 
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DISTRIBUTION-FREE TESTS 

16-2    DOES THE AVERAGE OF A NEW PRODUCT DIFFER 
FROM A STANDARD? 

Data Sample 16-2 — Reverse-Bias Collector Current of Ten Transistors 

The data are measurements of Icno for ten transistors of the same type, where ICBO is the reverse- 
bias collector current recorded in microamperes. 

The standard value m0 is 0.28/ia. 

Transistor IcBO 

1 0.28 
2 .18 
3 .24 
4 .30 
5 .40 
6 .36 
7 .15 
8 .42 
9 .23 

10 .48 

16-2.1     DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD?    THE SIGN TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .25, 
.10, .05, and .01 for this two-sided test. 

(2) Discard observations which happen to be 
equal to m0, and let n be the number of 
observations actually used. (If more than 
20% of the observations need to be dis- 
carded, this procedure should not be used). 

Example 

(1)   Let       a = .05 

(2)   In Data Sample 16-2, m« 
the first observation. 

n = 9 

= .28.    Discard 

(3)   For each observation X;, record the sign of       (3)   The less frequent sign is 
the difference X-, — m0. 
Count the number of occurrences of the less 
frequent sign.    Call this number r. 

Since there are 4 minus signs, 
r = 4 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a, n), con- 
clude that the average of the new product 
differs from the standard; otherwise, there 
is no reason to believe that the averages 
differ. 

(4) r (.05, 9) = 1 

(5) Since r is not less than r (.05, 9), there is no 
reason to believe that the average current 
differs from mn = .28/^a. 
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COMPARING AVERAGE PERFORMANCE 

16-2.2    DOES THE AVERAGE OF A NEW PRODUCT DIFFER FROM A STANDARD? 
SIGNED-RANKS TEST 

THE WILCOXON 

Procedure Example 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .05, 
.02, and .01 for this two-sided test. Dis- 
card any observations which happen to be 
equal to m0, and let n be the number of 
observations actually used. 

(1)   Let     a = .05 
In Data Sample 16-2, ma 

the first observation. 

n = 9 

= .28.    Discard 

(2)   Look up Ta (n), in Table A-34. (2)   T.o.(9)   = 6 

(3)   For each observation X;, compute 

X', = X; - m„ 

(4) Disregarding signs, rank the X'; according 
to their numerical value, i.e., assign the 
rank of 1 to the X\ which is numerically 
smallest, the rank of 2 to the X'i which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been, assigned had the X'/s differed only 
slightly. (If more than 20% of the ob- 
servations are involved in ties, this proce- 
dure should not be used.) 
To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign, according to whether the 
corresponding X] is positive or negative. 

(3) (4) 

X{ — mn Signed rank 
-.10 -5 
-.04 -2 
+ .02 + 1 
+ .12 +6 
+ .08 +4 
-.13 -7 
+ .14 +8 
-.05 -3 
+ .20 +9 

(5) Sum the ranks prefixed by a + sign, and 
the ranks prefixed by a — sign. Let T be 
the smaller (disregarding sign) of the two 
sums. 

(5)   Sum + = 28 
Sum - = 17 

T = 11 

(6) If T < Ta (n), conclude that the average 
performance of the new type differs from 
that of the standard; otherwise, there is no 
reason to believe that the averages differ. 

(6) Since T is not less than TM(9), there is no 
reason to believe that the average current 
differs from m0 = .28^a. 
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DISTRIBUTION-FREE TESTS 

16-3    DOES THE AVERAGE OF A NEW PRODUCT EXCEED 
THAT OF A STANDARD? 

Data Sample 16-3 — Reverse-Bias Collector Current of Twenty Transistors 

The data are a set of measurements ICHO for 20 transistors, where ICBO is the reverse-bias collector 
current recorded in microamperes. 

The standard value m0 is 0.28/ia. 

Transistor 

1 0.20Ma 
2 .16 
3 .20 
4 .48 
5 .92 
6 .33 
7 .20 
8 .53 
9 .42 

10 .50 
11 .19 
12 .22 
13 .18 
14 .17 
15 1.20 
16 .14 
17 .09 
18 .13 
19 .26 
20 .66 

16-3.1     DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD?    THE SIGN TEST 

Procedure Example 

(1) Choose a, the significance level of the test. (1)   Let « = .025 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) Discard observations which happen to be (2)   In Data Sample 16-3, mn = .28.    Since no 
equal to m0, and let n be the number of observations are equal to mn, 
observations actually used. (If more than 
20% of the observations need to be dis- 
carded, this procedure should not be used.) 

n = 20 

(3) For each observation X,, record the sign of       (3) 
the difference Xt — m0. 
Count the number of minus signs. 
Call this number r. r = 12 

(4) Look up r (a,n), in Table A-33. (4)   r (.025, 20) = 5 
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COMPARING AVERAGE PERFORMANCE 

Procedure (Cont) 

(5) If r is less than, or is equal to, r (a, n), con- 
clude that the average of the new product 
exceeds the standard; otherwise, there is no 
reason to believe that the average of the 
new product exceeds that of the standard. 

Example (Cont) 

(5) Since r is not less than r (.025, 20), there is 
no reason to believe that the average cur- 
rent exceeds m„ = .28,ua. 

16-3.2    DOES THE AVERAGE OF A NEW PRODUCT EXCEED THAT OF A STANDARD? 
THE WILCOXON SIGNED-RANKS TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .025, 
.01, and .005 for this one-sided test. Dis- 
card any observations which happen to be 
equal to ma, and let n be the number of 
observations actually used. 

(2) Look up Ta in), in Table A-34. 

(3) For each observation Xt, compute 

X- = X; - m„. 

(4) Disregarding signs, rank the X\ according 
to their numerical value, i.e., assign the 
rank of 1 to the X', which is numerically 
smallest, the rank of 2 to the X[ which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been assigned had the X','s differed only 
slightly. (If more than 20% of the ob- 
servations are involved in ties, this proce- 
dure should not be used.) 
To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign according to whether the X', 
is positive or negative. 

(5) Let T be the absolute value of the sum of 
the ranks preceded by a negative sign. 

(6) If T < Ta (n), conclude that the average 
performance of the new product exceeds 
that of the standard; otherwise, there is no 
reason to believe that the average of the 
new product exceeds that of the standard. 

Example 

(1)   Let       a = .025 
In Data Sample 16-3, ra0 = .28/xa. 
no observations are equal to ra0, 

n = 20 

Since 

(2)   T.„26 (20) = 52 

(3) (4) 

X: — m0 Signed Rank 
-0.08 - 5 
-0.12 -10 
-0.08 -  5 

0.20 + 15 
0.64 + 19 
0.05 + 2 

-0.08 - 5 
0.25 + 17 
0,14 + 11.5 
0.22 + 16 

-0.09 - 7 
-0.06 - 3 
-0.10 - 8 
-0.11 - 9 

0.92 +20 
-0.14 -11.5 
-0.19 -14 
-0.15 -13 
-0.02 -  1 

0.38 + 18 

(5) 91.5 

(6) Since T is not smaller than T.025 (20), there 
is no reason to believe that the average cur- 
rent exceeds ma = .28^a. 
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DISTRIBUTION-FREE TESTS 

16-4    IS THE AVERAGE OF A NEW PRODUCT LESS THAN 
THAT OF A STANDARD? 

Data Sample 16-4 — Tensile Strength of Aluminum Alloy 

The data are measurements of ultimate tensile strength (psi) for twenty test specimens of alu- 
minum alloy.    The standard value for tensile strength is m0 = 27,000 psi. 

Specimen 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Ultimate Tensile 
Strength (psi) 

24,200 
25,900 
26,000 
26,000 
26,300 
26,450 
27,250 
27,450 
27,550 
28,550 
29,150 
29,900 
30,000 
30,400 
30,450 
30,450 
31,450 
31,600 
32,400 
33,750 

16-4.1     IS THE AVERAGE OF A NEW PRODUCT LESS THAN THAT OF A STANDARD?    THE SIGN TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) Discard observations which happen to be 
equal to m0, and let n be the number of 
observations actually used. (If more than 
20% of the observations need to be dis- 
carded, this procedure should not be used.) 

(3) For each observation X,-, record the sign 
of the difference X, — m0. 
Count the number of plus signs.    Call this 
number r. 

(4) Look up r (a, n), in Table A-33. 

(1)   Let 

(2) 

(3) 

Example 

.025 

In Data Sample 16-4, m„ = 27,000. 
no observations are equal to m„, 

n = 20 

Since 

There are 14 plus signs, 
r = 14 

(4)   r (.025, 20) = 5 
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COMPARING AVERAGE PERFORMANCE 

Procedure (Cont) 

(5) If r is less than, or is equal to, r (a, n), con- 
clude that the average of the new product 
is less than the standard; otherwise, there 
is no reason to believe that the average of 
the new product is less than the standard. 

Example (Cont) 

(5) Since r is not less than r (.025, 20), there is 
no reason to believe that the average tensile 
strength is less than m0 = 27,000 psi. 

16-4.2    IS THE AVERAGE OF A NEW PRODUCT LESS THAN THAT OF A STANDARD? 
THE WILCOXON SIGNED-RANKS TEST 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-34 provides for values of a = .025 , 
.01, and .005 for this one-sided test. Dis- 
card any observations which happen to be 
equal to ma, and let n be the number of 
observations actually used. 

(2) Look up Ta (n), in Table A-34. 

(3) For each observation Xt, compute 

X' = X,- - m„. 

(4) Disregarding signs, rank the X; according 
to their numerical value, i.e., assign the 
rank of 1 to the X' which is numerically 
smallest, the rank of 2 to the X- which is 
next smallest, etc. In case of ties, assign 
the average of the ranks which would have 
been assigned had the X,''s differed only 
slightly. (If more than 20% of the ob- 
servations are involved in ties, this proce- 
dure should not be used.) 
To the assigned ranks 1, 2, 3, etc., prefix a 
+ or a — sign according to whether the 
corresponding X\ is positive or negative. 

(5) Let T be the sum of the ranks preceded by 
a + sign. 

(6) If T < T„ (n), conclude that the average of 
the new product is less than that of the 
standard; otherwise, there is no reason to 
believe that the average of the new product 
is less than that of the standard. 

Example 

(1)   Let       a = .025 
In Data Sample 16-4, 

ra„ = 27,000. 

Since no observations are equal to mn, 

n = 20 

(2) 

(3) 

7\s, (20) = 52 

(4) 

Xi  — Wo Signed Rank 

-2800 -11 
-1100 - 8 
-1000 - 6.5 
-1000 - 6.5 
- 700 - 5 
- 550 - 3.5 

250 + 1 
450 + 2 
550 + 3.5 

1550 + 9 
2150 + 10 
2900 + 12 
3000 + 13 
3400 + 14 
3450 + 15.5 
3450 + 15.5 
4450 + 17 
4600 + 18 
5400 + 19 
6750 +20 

(5) 169.5 

(6) Since T is not less than T.UK (20), there is 
no reason to believe that the average tensile 
strength is less than mv = 27,000 psi. 
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DISTRIBUTION-FREE TESTS 

16-5    DO PRODUCTS A AND  B DIFFER IN  AVERAGE PERFORMANCE? 

Two procedures are given to answer this question. Each of the procedures is applicable to a 
different situation, depending upon how the data have been taken. 

Situation 1 (for which the sign test of Paragraph 16-5.1 is applicable) is the case where observa- 
tions on the two things being compared have been obtained in pairs. Each of the two observations 
on a pair has been obtained under similar conditions, but the different pairs need not have been 
obtained under similar conditions. Specifically, the sign test procedure tests whether the median 
difference between A and B can be considered equal to zero. 

Situation 2 (for which we use the Wilcoxon-Mann-Whitney test of Paragraph 16-5.2) is the case 
where two independent samples have been drawn — one from population A and one from popula- 
tion B. This test answers the following kind of questions — if the two distributions are of the 
same form, are they displaced with respect to each other? Or, if the distributions are quite different 
in form, do the observations on A systematically tend to exceed the observations on B? 

16-5.1     DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE?    THE SIGN TEST FOR PAIRED 
OBSERVATIONS 

Data Sample 16-5.1 —Reverse-Bias Collector Currents of Two Types of Transistors 

Ten pairs of measurements of 7C,,0 on two types of transistors are available, as follows: 

Type A Type B 

.19 .21 

.22 .27 

.18 .15 
.17 .18 

1.20 .40 
.14 .08 
.09 .14 
.13 .28 
.26 .30 
.66 .68 
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COMPARING AVERAGE PERFORMANCE 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .25 , 
.10, .05, and .01 for this two-sided test. 

(2) For each pair, record the sign of the differ- 
ence X,[ — X„ . Discard any difference 
which happens to equal zero. Let n be the 
number of differences remaining. (If more 
than 20% of the observations need to be 
discarded, this procedure should not be 
used.) 

(3) Count the number of occurrences of the less 
frequent sign.    Call this r. 

Example 

(1) Let a = .10 

(2) In Data Sample 16-5.1, 

n = 10 

(3)   There are 3 plus signs. 
r = 3 

(4) r (.10, 10) = 1 

(5) Since r is not less than r (.10, 10), there is 
no reason to believe that the two types 
differ in average current. 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a, n), con- 
clude that the averages differ; otherwise, 
there is no reason to believe that the 
averages differ. 

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two 
products in the paired-sample situation; follow the procedure of Paragraph 16-2.2, substituting 
X'i = XA — Xn for X'i = X; - m„ in step (3) of that procedure. 

16-5.2    DO PRODUCTS A AND B DIFFER IN AVERAGE PERFORMANCE?    THE WILCOXON-MANN- 
WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

Data Sample 16-5.2 — Forward Current Transfer Ratio of Two Types of Transistors 

The data are measurements of hfc for two independent groups of transistors, where hfe is the 
small-signal short-circuit forward current transfer ratio. 

Group A Group B 

50.5   (9)* 57.0   (17) 
37.5   (1) 52.0   (11) 
49.8   (7) 51.0   (10) 
56.0   (15.5) 44.2   (3) 
42.0   (2) 55.0   (14) 
56.0   (15.5) 62.0   (19) 
50.0   (8) 59.0   (18) 
54.0   (13) 45.2   (5) 
48.0   (6) 53.5   (12) 

44.4   (4) 

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
in Step (2) of the following Procedure and Example. 
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DISTRIBUTION-FREE TESTS 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-35 provides for values of a = .01, 
.05, .10, and .20 for this two-sided test 
when nA , nIS < 20. 

Example 

(1)   Let a = .10 

(2) Combine the observations from the two 
samples, and rank them in order of in- 
creasing size from smallest to largest. 
Assign the rank of 1 to the lowest, a rank 
of 2 to the next lowest, etc. (Use algebraic 
size, i.e., the lowest rank is assigned to the 
largest negative number, if there are nega- 
tive numbers). In case of ties, assign to 
each the average of the ranks which would 
have been assigned had the tied observa- 
tions differed only slightly. (If more than 
20% of the observations are involved in 
ties, this procedure should not be used.) 

(2) In Data Sample 16-5.2, the ranks of the 
nineteen individual observations, from low- 
est to highest, are shown in parentheses 
beside the respective observations. Note 
that the two tied observations (56.0) are 
each given the rank 15.5 (instead of ranks 
15 and 16), and that the next larger obser- 
vation is given the rank 17. 

(3)   Let:  nt = smaller sample 
n-2 = larger sample 
n = rii + Wo 

(3) ni = 9 
n, = 10 
n = 19 

(4) Compute R, the sum of the ranks for the 
smaller sample. (If the two samples are 
equal in size, use the sum of the ranks for 
either sample.) 

Compute R' = rij (n + 1) — R 

(4) R = 77 

R' 9(20) 
103 

77 

(5)   Look up Ra (rii, n«), in Table A-35. (5)   Ä.,„(9, 10) = 69 

(6) If either R or R' is smaller than, or is equal 
to, Ra (Wi, n->), conclude that the averages 
of the two products differ; otherwise, there 
is no reason to believe that the averages of 
the two products differ. 

(6) Since neither R nor R' is smaller than 
R.it, (9, 10), there is no reason to believe 
that the averages of the two groups differ. 

16-6    DOES THE AVERAGE OF PRODUCT A  EXCEED THAT OF PRODUCT B? 

Two procedures are given to answer this question..  In order to choose the procedure that is 
appropriate to a particular situation, read the discussion in Paragraph 16-5. 
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COMPARING AVERAGE PERFORMANCE 

16-6.1     DOES THE  AVERAGE  OF  PRODUCT A  EXCEED THAT OF  PRODUCT B? 
FOR PAIRED OBSERVATIONS 

THE SIGN TEST 

In terms of Data Sample 16-5.1, assume that we had asked in advance (not after looking at the 
data) whether the average ICHO was larger for Type A than for Type B. 

Procedure 

(1) Choose a, the significance level of the test. 
Table A-33 provides for values of a = .125, 
.05, .025, and .005 for this one-sided test. 

(2) For each pair, record the sign of the differ- 
ence XA — XB- Discard any difference 
which happens to equal zero. Let n be the 
number of differences remaining.    (If more 

discarded, 
used.) 

this procedure should not be 

(3)   Count the number of minus signs, 
this number r. 

Call 

Example 

(1) Let a = .025 

(2) In Data Sample 16-5.1, 

n = 10 

(3)   There are 7 minus signs. 
r = 7 

(4) Look up r (a, n), in Table A-33. 

(5) If r is less than, or is equal to, r (a,n), con- 
clude that the average of product A ex- 
ceeds the average of product B; otherwise, 
there is no reason to believe that the aver- 
age of product A exceeds that of product B. 

(4) r (.025, 10) = 1 

(5) Since r is not less than r (.025, 10), there is 
no reason to believe that the average of 
Type A exceeds the average of Type B. 

Note: The Wilcoxon Signed-Ranks Test also may be used to compare the averages of two 
products in the paired-sample situations; follow the procedure of Paragraph 16-3.2, substituting 
X', = XA - XH for X'i = X, - mu in Step (3) of that Procedure. 

16-6.2    DOES THE AVERAGE OF PRODUCT A EXCEED THAT OF PRODUCT B?    THE WILCOXON- 
MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

Data Sample 16-6.2 — Output Admittance of Two Types of Transistors 

The data are observations of h„b for two types of transistors, where h„h = small-signal open-circuit 
output admittance. 

Type A TypeB 

.291   (5)* .246   (1) 

.390   (10) .252   (2) 

.305   (7) .300   (6) 

.331   (9) .289   (4) 

.316   (8) .258   (3) 

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
in Step (2) of the following Procedure and Example. 

16-11 



DISTRIBUTION-FREE TESTS 

Does the average h„h for Type A exceed that for Type B? 

Procedure Example 

(1) Choose a, the significance level of the test. 
Table A-35 provides for values of 
a = .005, .025, .05, and .10 for this one- 
sided test, when nA , fin < 20. 

(1)   Let .05 

(2) Combine the observations from the two 
populations, and rank them in order of 
increasing size from smallest to largest. 
Assign the rank of 1 to the lowest, a rank 
of 2 to the next lowest, etc. (Use alge- 
braic size, i.e., the lowest rank is assigned 
to the largest negative number if there are 
negative numbers). In case of ties, assign 
to each the average of the ranks which 
would have been assigned had the tied 
observations differed only slightly. (If 
more than 20% of the observations are 
involved in ties, this procedure should not 
be used.) 

(2) In Data Sample 16-6.2, the ranks of the 
ten individual observations, from lowest 
to highest, are shown beside the respective 
observations. 

(3)   Let:  nx = smaller sample 
n2 = larger sample 
n = nl + n2 

(3) 7li — 5 

n2 = 5 
n = 10 

(4)   Look up Ra («1, m), in Table A-35. (4)   Ä.0S(5,5) = 19 

(5a) If the two samples are equal in size, or if 
nR is the smaller, compute RH the sum of 
the ranks for sample B. If RB is less 
than, or is equal to, Ra (wi, n2), conclude 
that the average for product A exceeds 
that for product B; otherwise, there is no 
reason to believe that the average for 
product A exceeds that for product B. 

(5a) RB = 16 
Since RH is less than R.K (5, 5), conclude 
that the average for Type A exceeds that 
for Type B. 

(5b) If nA is smaller than nK, compute RA the 
sum of the ranks for sample A, and com- 
pute R'A = nA (n + 1) — RA- 
If R'A is less than, or is equal to, Ra (nt, n2), 
conclude that the average for product A 
exceeds that for product B; otherwise, 
there is no reason to believe that the 
two products differ. 
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COMPARING AVERAGE PERFORMANCE 

16-7    COMPARING THE AVERAGES OF SEVERAL PRODUCTS 
DO THE AVERAGES OF f PRODUCTS DIFFER? 

Data Sample 16-7 — Life Tests of Three Types of Stopwatches 

Samples from each of three types of stopwatches were tested.    The following data are thousands 
of cycles (on-off-restart) survived until some part of the mechanism failed. 

Type 1 Type 2 Type 3 

1.7 (D* 
1.9 (2) 
6.1 (3) 
12.5 (4) 
16.5 (7) 
25.1 (10.5) 
30.5 (14) 
42.1 (15) 
82.5 (20) 

13.6 (6) 
19.8 (8) 
25.2 (12) 
46.2 (16.5) 
46.2 (16.5) 
61.1 (19) 

13.4 (5) 
20.9 (9) 
25.1 (10.5) 
29.7 (13) 
46.9 (18) 

* The numbers shown in parentheses are the ranks, from lowest to highest, for all observations combined, as required 
in Step (3) of the following Procedure and Example. 

TABLE  16-1.    WORK TABLE FOR DATA SAMPLE  16-7 

Ranks Ranks Ranks 
Type 1 Type 2 Type 3 

1 6 5 
2 8 9 
3 12 10.5 
4 16.5 13 
7 16.5 18 

10.5 19 
14 
15 
20 

R, R, =  76.5 R» = 78.0 R, = 55.5 
Hi 9 6 5 
Ri2/rii 650.25 1014.00 616.05 
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DISTRIBUTION-FREE TESTS 

Does the average length of "life" differ for the three types? 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up xi-a for t — 1 degrees of freedom, 
in Table A-3, where t is the number of 
products to be compared. 

(3) We have nlt n2, ... , n( observations on 
each of the products 1, 2, . . . , t. 

N = nx + n2 + . . . + nt. 

Assign ranks to each observation according 
to its size in relation to all N observations. 
That is, assign rank 1 to the smallest, 2 to 
the next larger, etc., and N to the largest. 
In case of ties, assign to each of the tied 
observations the average of the ranks which 
would have been assigned had the observa- 
tions differed slightly. (If more than 20% 
of the observations are involved in ties, 
this procedure should not be used.) 

(4) Compute fi,, the sum of the ranks of the 
observations on the ith product, for each of 
the products. 

(5) Compute 

H i2      ' m 
N (N + 1) hi nt 

3 (N + 1) 

(6) If H > x\_a, conclude that the averages of 
the t products differ; otherwise, there is no 
reason to believe that the averages differ. 

Example 

(1) Let              a = .10 

(2) t = 3 
x2

9„ for 2 d.f. = 4.61 

(3)   In Data Sample 16-7, 

N = 9 + 6 20. 

The assigned ranks are shown in  Data 
Sample 16-7 and in Table 16-1. 

(4) 

(5) 

ßi - 76.5 
R2 = 78.0 
ff» = 55.5 

H 11 
420 
2.15 

(2280.30) - 63 

(6) Since H is not larger than x2
9o, there is no 

reason to believe that the averages for the 
three types differ. 

Note: When using this Procedure, each of the w, should be at least 5.    If any w; are less than 5, 
the level of significance a may be considerably different from the intended value. 
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CHAPTER  17 

THE TREATMENT OF OUTLIERS 

17-1     THE PROBLEM  OF REJECTING OBSERVATIONS 

Every experimenter, at some time, has obtained a set of observations, purportedly taken under 
the same conditions, in which one observation was widely different, or an outlier from the rest. 

The problem that confronts the experimenter is whether he should keep the suspect observation 
in computation, or whether he should discard it as being a faulty measurement. The word reject 
will mean reject in computation, since every observation should be recorded. A careful experi- 
menter will want to make a record of his "rejected" observations and, where possible, detect and 
carefully analyze their cause (s). 

It should be emphasized that we are not discussing the case where we knoiv that the observation 
differs because of an assignable cause, i.e., a dirty test-tube, or a change in operating conditions. 
We are dealing with the situation where, as far as we are able to ascertain, all the observations are 
on approximately the same footing. One observation is suspect however, in that it seems to be 
set apart from the others. We wonder whether it is not so far from the others that we can reject 
it as being caused by some assignable but thus far unascertained cause. 

When a measurement is far-removed from the great majority of a set of measurements of a 
quantity, and thus possibly reflects a gross error, the question of whether that measurement should 
have a full vote, a diminished vote, or no vote in the final average — and in the determination of 
precision — is a very difficult question to answer completely in general terms. If on investigation, 
a trustworthy explanation of the discrepancy is found, common sense dictates that the value con- 
cerned should be excluded from the final average and from the estimate of precision, since these 
presumably are intended to apply to the unadulterated system. If, on the other hand, no explana- 
tion for the apparent anomalousness is found, then common sense would seem to indicate that it 
should be included in computing the final average and the estimate of precision. Experienced 
investigators differ in this matter. Some, e.g., J. W. Bessel, would always include it. Others 
would be inclined to exclude it, on the grounds that it is better to exclude a possibly "good" measure- 
ment than to include a possibly "bad" one. The argument for exclusion is that when a "good" 
measurement is excluded we simply lose some of the relevant information, with consequent decrease 
in precision and the introduction of some bias (both being theoretically computable); whereas, 
when a truly anomalous measurement is included it vitiates our results, biasing both the final average 
and the estimate of precision by unknown, and generally unknowable, amounts. 

There have been many criteria proposed for guiding the rejection of observations. For an excel- 
lent summary and critical review of the classical rejection procedures, and some more modern 
ones, see P. R. Rider01. One of the more famous classical rejection rules is "Chauvenet's criterion," 
which is not recommended. This criterion is based on the normal distribution and advises rejection 
of an extreme observation if the probability of occurrence of such deviation from the mean of the n 
measurements is less than ) in.    Obviously, for small n, such a criterion rejects too easily. 
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TREATMENT OF OUTLIERS 

A review of the history of rejection criteria, and the fact that new criteria are still being proposed, 
leads us to realize that no completely satisfactory rule can be devised for any and all situations. 
We cannot devise a criterion that will not reject a predictable amount from endless arrays of per- 
fectly good data; the amount of data rejected of course depends on the rule used. This is the price 
we pay for using any rule for rejection of data. No available criteria are superior to the judgment 
of an experienced investigator who is thoroughly familiar with his measurement process. For an 
excellent discussion of this point, see E. B. Wilson, Jr.'-'. Statistical rules are given primarily for 
the benefit of inexperienced investigators, those working with a new process, or those who simply 
want justification for what they would have done anyway. 

Whatever rule is used, it must bear some resemblance to the experimenter's feelings about the 
nature and possible frequency of errors. For an extreme example — if the experimenter feels that 
about one outlier in twenty reflects an actual blunder, and he uses a rejection rule that throws out 
the two extremes in every sample, then his reported data obviously will be "clean" with respect 
to extreme blunders — but the effects of "little" blunders may still be present. The one and only 
sure way to avoid publishing any "bad" results is to throw away all results. 

With the foregoing reservations, Paragraphs 17-2 and 17-3 give some suggested procedures for 
judging outliers. In general, the rules to be applied to a single experiment (see Paragraph 17-3) 
reject only what would be rejected by an experienced investigator anyway. 

17-2    REJECTION OF OBSERVATIONS IN ROUTINE EXPERIMENTAL WORK 

The best tools for detection of errors (e.g., systematic errors, gross errors) in routine work are the 
control charts for the mean and range. These charts are described in Chapter 18, which also 
contains a table of factors to facilitate their application, Table 18-2. 

17-3    REJECTION OF OBSERVATIONS IN A SINGLE EXPERIMENT 

We assume that our experimental observations (except for the truly discordant ones) come from 
a single normal population with mean m and standard deviation a. In a particular experiment, 
we have obtained n observations and have arranged them in order from lowest to highest 
(Xi < X2 < . . . < X„). We consider procedures applicable to two situations: when observa- 
tions which are either too large or too small would be considered faulty and rejectable, see Para- 
graph 17-3.1; when we consider rejectable those observations that are extreme in one direction 
only (e.g., when we want to reject observations that are too large but never those that are too 
small, or vice versa), see Paragraph 17-3.2. The proper choice between the situations must be 
made on a priori grounds, and not on the basis of the data to be analyzed. 

For each situation, procedures are given for four possible cases with regard to our knowledge of 
m and a. 
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PROBLEM OF REJECTING OBSERVATIONS 

17-3.1     WHEN EXTREME OBSERVATIONS IN EITHER  DIRECTION ARE CONSIDERED REJECTABLE 

17-3.1.1     Population Mean and Standard Deviation Unknown — Sample in Hand is the Only Source 
of Information. 

[The Dixon Criterion] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) If: 3 < n < 7 Compute r10 

8 < n < 10 Compute ru 

11 < n < 13 Compute rn 

14 < n < 25 Compute r22, 

where r;j is computed as follows: 

r,, If X„ is Suspect If Xi is Suspect 
nn (Xn - x7-i)/(X„ - X,) (X, - X,)/(Xn - X,) 
m (Xn - Xn^)/(Xn - X2) (X2 - XMiXt-i - X:) 
r21 (Z„ - X„_2)/(X„ - X2) (X3 - X,)/(X„_i - X,) 
r22 (X„ - X„_2)/(X„ - X;j) (X, - *,)/(X„_s - X.) 

(3) Look up ri_«/2 for the ry from Step (2), in Table A-14. 

(4) If r,7 > ri_a 2, reject the suspect observation; otherwise, retain it. 

17-3.1.2    Population Mean and Standard Deviation Unknown — Independent External Estimate of 

Standard Deviation is Available. 

[The Studentized Range] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up ^!_„ (n, v) in Table A-10. n is the number of observations in the sample, and v is 
the number of degrees of freedom for s, the independent external estimate of the standard 
deviation obtained from concurrent or past data — not from the sample in hand. 

(3) Compute w = gi_„s. 

(4) If X„ — Xi > w, reject the observation that is suspect; otherwise, retain it. 

17-3.1.3    Population Mean Unknown — Value for Standard Deviation Assumed. 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up 9!_a (n, <*) in Table A-10. 

(3) Compute w = <7i_„ a. 

(4) If X„ — Xi > w, reject the observation that is suspect; otherwise, retain it. 

17-3 



TREATMENT OF OUTLIERS 

17-3.1.4    Population Mean and Standard Deviation Known. 

Procedure Example 

(1) Choose a, the probability or risk we are       (1)   Let       a = .10, 
willing to take of rejecting an observation for example, 
when all n really belong in the same group. 

(2) Compute a! = 1 - (1 - a)1'" (2)   If n = 20, 
(We can compute this value using loga-              for example, 
rithms, or by reference to a table of frac- a' = 1 — (1 — .lO)1'-" 
tional powers.) = 1 - (.90)"-" 

= 1 - .9947 
= .0053 

(3) Look up Zl_./S in Table A-2. (3)   1 - «"2 = 1 - (.0053/2) 
(Interpolation in Table A-2 may be re- = .9974 
quired.    The   recommended   method   is                     z.9S7i = 2.80 
graphical interpolation, using probability 
paper.) 

(4) Compute: (4) 

a = m — <rZi_„</2 a = m — 2.80 a- 
b = m + vZx-a'ii b = m + 2.80 o- 

(5) Reject any observation that does not lie in       (5)   Reject any observation that does not lie in 
the interval from a to b. the interval from 

m - 2.80 a       to 
m + 2.80(7. 

17-3.2    WHEN EXTREME OBSERVATIONS IN ONLY ONE DIRECTION ARE CONSIDERED REJECTABLE 

17-3.2.1     Population Mean and Standard Deviation Unknown — Sample in Hand is the Only Source 

of Information. 

[The Dixon Criterion] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) If: 3 < n < 7 Compute r1(, 
8 < n < 10 Compute rn 

11 < n < 13 Compute r-n 
14 < n < 25 Compute r™, 

s computed as follows: 

If Only Large Val ues If Only Small Values 

TJi are Suspect 
(X2 

are Suspect 
Tu, (Xn ■ - X,_,), '{Xn    - ■X,) - X0/(X„ - X0 
Til {Xn ■ - *„-,), '{X„ - •X2) (X, - X,)/^,., -X,) 
Tu (X„ ■ - *„-,)/ '{Xn - X5) (X, - X1)/(X„_1 -X0 
r22 (X„ - *-*), '{X„ - ■X:t) (X, -X,)/(X„_2 -xo 

(3) Look up ri_a for the ru from Step (2), in Table A-14. 

(4) If Tjj > ri_„, reject the suspect observation; otherwise, i-etain it. 
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PROBLEM OF REJECTING OBSERVATIONS 

17-3.2.2    Population Mean and Standard Deviation Unknown — Independent External Estimate of 

Standard Deviation is Available. 

[Extreme Studentized Deviate From Sample Mean; The Nair Criterion] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up ta (n, v) in Table A-16. n is the number of observations in the sample, and v is the 
number of degrees of freedom for s, the independent external estimate of the standard deviation 
obtained from concurrent or past data — not from the sample in hand. 

(3) If only observations that are too large are considered rejectable, compute 

t„ = (X„ - X)/s„. 

Or, if only observations that are too small are considered rejectable, compute 

h = (X - X,)/sv. 

(4) If tn (or ti, as appropriate) is larger than ta (n, v), reject the observation that is suspect; 
otherwise, retain it. 

17-3.2.3    Population Mean Unknown — Value for Standard Deviation Assumed. 

[Extreme Standardized Deviate From Sample Mean] 

Procedure 

(1) Choose a, the probability or risk we are willing to take of rejecting an observation that really 
belongs in the group. 

(2) Look up ta (n, <*) in Table A-16. 

(3) If observations that are too large are considered rejectable, compute 

t„  =  (X„  — X)/a. 

Or, if observations that are too small are considered rejectable, compute 

U  =  (X - X1)/a. 

(4) If tn (or t\, as appropriate) is larger than ta (n,  ^), reject the observation that is suspect; 
otherwise, retain it. 
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TREATMENT OF OUTLIERS 

17-3.2.4    Population Mean and Standard Deviation Known. 

Procedure 

(1) Choose a, the probability or risk we are 
willing to take of rejecting an observation 
when all n really belong in the same group. 

(2) Compute «'/2 = 1 - (1 - a)1'-. 
(We can compute this value using loga- 
rithms, or by reference to a table of frac- 
tional powers.) 

(3)   Look up Zi_„./2 in Table A-2. 
(Interpolation in Table A-2 may be re- 
quired. The recommended method is 
graphical interpolation using probability 
paper.) 

(4)   Compute: 

a = m — aZx-a'it 
b = m + aZi-a'/t 

(5)   Reject any observation that does not lie in 
the interval from a to b. 

(4) 

Example 

(1) Let       a = .10, 
for example. 

(2) If n = 20, 
for example, 

«'/2 = 1 - (1 - .10)1/2° 
= 1.- (.90) >'*• 
= 1 - .9947 
= .0053 

(3) 1 - «72 = 1 - .0053 
= .9947 

2.9947   =   2.55 

a = m — 2.55 a 
b = m + 2.55 o- 

(5)   Reject any observation that does not lie in 
the interval from 

m — 2.55 a       to 
m + 2.55 o-. 
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CHAPTER   18 

THE PLACE OF CONTROL CHARTS IN EXPERIMENTAL WORK 

18-1     PRIMARY OBJECTIVE OF CONTROL CHARTS 

Control charts have very important functions 
in experimental work, although their use in 
laboratory situations has been discussed only 
briefly by most textbooks. Control charts can 
be used as a form of statistical test in which the 
primary objective is to test whether or not the 
process is in statistical control. The process is in 
statistical control when repeated samples from 
the process behave as random samples from a 
stable probability distribution; thus, the under- 
lying conditions of a process in control are such 
that it is possible to make predictions in the 
probability sense. 

The control limits are usually computed by 
using formulas which utilize the information 
from the samples themselves.    The computed 

limits are placed as lines on the specific chart, 
and the decision is made that the process was in 
control if all points fall within the control limits. 
If all points are not within the limits, then the 
decision is made that the process is not in control. 

The basic assumption underlying most sta- 
tistical techniques is that the data are a random 
sample from a stable probability distribution, 
which is another way of saying that the process 
is in statistical control. It is the validity of this 
basic assumption which the control chart is 
designed to test. The control chart is used to 
demonstrate the existence of statistical control, 
and to monitor a controlled process. As a 
monitor, a given control chart indicates a par- 
ticular type of departure from control. 

18-2    INFORMATION  PROVIDED BY CONTROL CHARTS 

Control charts provide a running graphical 
record of small subgroups of data taken from a 
repetitive process. Control charts may be kept 
on any of various characteristics of each small 
subgroup — e.g., on the average, standard de- 
viation, range, or proportion defective. The 
chart for each particular characteristic is de- 
signed to detect certain specified departures in 
the process from the assumed conditions. The 
process may be a measurement process as well 
as a production process. The order of groups is 
usually with respect to time, but not necessarily 
so. The grouping is such that the members of 
the same group are more likely to be alike than 
are members of different groups. 

Primarily, control charts can be used to 
demonstrate whether or not the process is in 
statistical control.    When the charts show lack 

of control, they indicate where or when the 
trouble occurred. Often they indicate the na- 
ture of the trouble, e.g., trends or runs, sudden 
shifts in the mean, increased variability, etc. 

In addition to serving as a method of testing 
for control, control charts also provide addi- 
tional and useful information in the form of 
estimates of the characteristics of a controlled 
process. This information is altogether too- 
frequently overlooked. For example, one very 
important piece of information which can be 
obtained from a control chart for the range or 
standard deviation is an estimate of the varia- 
bility a of a routine measurement or production 
process. It should be remembered that many 
of the techniques of Section 1, Chapter 3, are 
given in parallel for known o- and unknown a. 
Most experimental scientists have very good 
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knowledge of the variability of their measure- 
ments, but hesitate to assume known a without 
additional justification. Control charts can be 
used to provide the justification. 

Finally, as was pointed out in Chapter 17, 
Paragraph 17-2, a control chart is the most 
satisfactory criterion for rejection of observa- 
tions in a routine laboratory operation. An ex- 
cellent discussion of the use of control charts to 
detect particular kinds of trouble is given by 
01mstead(n. The three most important types 
of control charts in this connection are the 
charts for the average X, range R, and stand- 
ard deviation a. The order of usefulness of 
each type of chart in particular situations is 
shown in Table 18-1, where a "1" means most 
useful, "2" is the next best, and dots denote 
"not appropriate". 

As can be seen from Table 18-1, the X and R 
charts are the most useful of the three types. 
The R chart is preferred to the a chart because 
of its simplicity and versatility; and, unless 
there are compelling reasons to use the a chart, 
the R chart is the method of choice. 

TABLE  18-1.    TESTS FOR LOCATING AND 
IDENTIFYING SPECIFIC TYPES OF 

ASSIGNABLE CAUSES 

Control Ch arts* 

Type of Assignable Cause 
X R a 

Gross Error (Blunder) 1 2 
Shift in Average 1 
Shift in Variability 1 2 
Slow Fluctuation (Trend) 1 
Fast Fluctuation (Cycle) 1 2 
Combination: 

(a)  Production 1 2 
(b) Research 

Covariation 1 

* The numeral 1 denotes the most useful type of chart; 
2 denotes the next best; and, . . denote charts which are 
not appropriate for the particular cause. 

Adapted with permission from Industrial Quality Control, Vol. IX, 
No. 3, (November, 1952) and No. 4, (January, 1953) from article 
entitled "How to Detect the Type of an Assignable Cause" by P. S. 
Olmstead. 

18-3    APPLICATIONS OF CONTROL CHARTS 

s - V 

Table 18-2 is a summary table of factors for 
control charts for X, R, and a, when equal size 
samples are involved. Note carefully the foot- 
note to Table  18-2,  beginning "When using 

V(X   — X)'- "   ••' '- . . . ", because s is so defined 
n — \ 

in this Handbook.    The last column of Table 

18-2 gives values of for convenience in 
\    n 

using the Table factors with values of s. 

The most explicit details of application to a 
variety of possible situations, e.g., to samples of 
unequal size, are given in the ASTM Manual0-"; 
in using that Manual, however, the reader again 
must be wary of the difference between the defi- 
nition of o- given therein, and the definition of s 
given in this Handbook. 

Actual examples of laboratory applications in 
the chemical field can be found in a series of 
comprehensive bibliographies published in Ana- 
lytical Chemistry <*•*•*••>. These four articles 
are excellent reviews that successively bring 
up-to-date the recent developments in statis- 
tical theory and statistical applications that 
are of interest in chemistry. Further, these 
bibliographies are divided by subject matter, 
and thus provide means for locating articles on 
control charts in the laboratory. They are not 
limited to control chart applications, however. 

Industrial Quality Control'71, the monthly 
journal of the American Society for Quality 
Control, is the most comprehensive publication 
in this field. 

For a special technique with ordnance exam- 
ples, see Grubbs'*'. 
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TABLE 18-2.    FACTORS FOR COMPUTING 3-SIGMA CONTROL LIMITS 

Numbor of 
Observations 
in Sample, n 

Chart for Averages Chart for Standard Deviations Chart for Ranges 

Factors for 
Control Limits 

Factors for 
Control Lino 

Factors for 
Control Limits 

Factors for 
Control Lino 

Factors for 
Control Limits ■■& 

I/o l/A 

2    2.121    3.760 , 1.880   0.5642 ' 1.7725 
3 j 1.732 j 2.394 j 1.023 j 0.7236 ' 1.3820 
4. . . .    ! 1.500 j 1.880 j 0.729 ; 0.7979 I 1.2533 
5    1.342 ' 1.596   0.577   0.8407 ' 1.1894 

6    1.225 ' 1.410   0.483   0.8686   1.1512 
7 i 1.134 i 1.277 i 0.419 , 0.8882 | 1.1259 I > 

1.843 
1.858 
1.808 
1.756 

1.970 
1.882 
1.815 

2.534 i 0.3946 : 0.848 0 

9. 
10. 

0.026   1.711   0.030 
0.105   1.672   0.118 

1.061 | 1.175 i 0.373   0.9027   1.1078 , 0.167   1.638   0.185 
i 1.000 I 1.094 | 0.337   0.9139   1.0942 i 0.219 , 1.609 , 0.239   1.761 , 2.970   0.3367 J 0.808 J 0.546 

0.949   1.028 ! 0.308 , 0.9227   1.0837 | 0.262 i 1.584 : 0.284 : 1.716   3.078 ; 0.3249   0.797 I 0.687 

3.267 I 1.128 ' 0.8865 0.853 
2.568   1.693 | 0.5907 0.888 
2.266   2.059 ' 0.4857 j 0.880 
2.089   2.326 I 0.4299 0.864 

1 
D1 D,     j 

1   ° 3.686 
0 4.358 

o 4.698 

D, 

0     I 4.918 

0 | 3.267 ' .70711 
0 2.575 : .81650 
0 2.282   .86603 
0 2.115 I .89443 

5.078      0 2.004   .91287 
2.704 I 0.3698 [ 0.833   0.205   5.203 j 0.076   1.924 j .92582 
2.847   0.3512   0.820 ! 0.387 

11   0.905 ' 0.973 ! 0.285   0.9300 
12   0.866 , 0.925   0.266   0.9359 
13 1 0.832 
14   0.802 
15 ! 0.775 

1.0753 
1.0684 

0.884 j 0.249   0.9410   1.0627 
0.848 : 0.235 i 0.9453 ! 1.0579 
0.816 I 0.223 ; 0.9490   1.0537 

0.299 1.561 
0.331 1.541 
0.359 1.523 
0.384 ' 1.507 
0.406 1.492 

0.321 
0.354 
0.382 
0.406 
0.428 

1.679 
1.646 
1.618 
1.594 
1.572 

3.173 
3.258 
3.336 
3.407 
3.472 

5.307 0.136 1.864 
5.394 i 0.184 | 1.816 
5.469   0.223   1.777 ' 

0.3152 i 0.787   0.812   5.534 
0.3069 I 0.778 I 0.924   5.592 
0.2998 ! 0.770 ! 1.026 | 5.646 
0.2935 [ 0.762   1.121 ! 5.693   0.329 
0.2880   0.755   1.207   5.737   0.348 

0.256 
0.284 
0.308 

16 0.750 i 0.788 ! 0.212   0.9523 
17   0.728 ; 0.762 '' 0.203   0.9551 
18. 
19 
20 

21 
22 
23 
24 
25 

0.707 
0.688 
0.671 

0.655 
0.640 
0.626 
0.612 
0.600 

0.738 0.194 0.9576 
0.717 I 0.187 0.9599 
0.697   0.180 i 0.9619 ; 1.0396 j 0.491 

1.0501 ] 0.427 ] 1.478 j 0.448 ; 1.552 , 3.532 t 0.2831   0.749 
1.0470 ' 0.445 | 1.465 | 0.466   1.534   3.588 . 0.2787   0.743 
1.0442 | 0.461 : 1.454 ; 0.482 ' 1.518 ! 3.640   0.2747   0.738 

1.443   0.497   1.503   3.689   0.2711 ; 0.733 
1.433   0.510   1.490   3.735   0.2677 i 0.729 

1.744 
1.716 
1.692 
1.671 
1.652 

.93541 

.94281 

.94868 

.95346 

.95743 

.96077 

.96362 
.96609 

1.0418   0.477 

0.679 
0.662 
0.647 
0.632 
0.619 

0.173 
0.167 
0.162 
0.157 
0.153 

0.9638 
0.9655 
0.9670 
0.9684 
0.9696 

1.0376 
1.0358 
1.0342 
1.0327 
1.0313 

0.504 
0.516 
0.527 
0.538 
0.548 

1.424 
1.415 
1.407 
1.399 
1.392 

0.523 
0.534 
0.545 
0.555 
0.565 

1.477 
1.466 
1.455 
1.445 
1.435 

3.778 0.2647 
3.819 0.2618 
3.858 I 0.2592 
3.895 I 0.2567 
3.931 I 0.2544 

0.724 
0.720 
0.716 
0.712 
0.709 

1.285 
1.359 
1.426 
1.490 
1.548 

1.606 
1.659 
1.710 
1.759 
1.804 

5.779 
5.817 
5.854 
5.888 
5.922 

I 

Adapted with permiaaion from AttTM Manual oa Qtolito Control of MolerioU. p. 115, copyright, 1951. American Society for Testing Materiala. 

5.950 
5.979 
6.006 
6.031 
6.058 

0.364 
0.379 
0.392 
0.404 
0.414 

0.425 
0.434 
0.443 
0.452 
0.459 

1.636 
1.621 
1.608 
1.596 
1.586 

1.575 
1.566 
1.557 
1.548 
1.541 

.96825 

.97014 

.97183 

.97333 

.97468 

.97590 

.97701 

.97802 

.97895 

.97980 

FORMULAS" 

Purpose of Chart Chart for Central Line 
3-Sigma 

Control Limits 

For analyzing past data for control {X, 0, 
ft are average values for the data being 
analyzed) 

Averages X 

Standard deviations       ä 
Ranges K 

X ± Aiä, or 
X ± Aji 
B35 and B,s 
Dji and Dji 

For controlling performance to standard 
values (X', </, R,,' are selected stand- 
ard values; R,,' = tf2o-' for samples of    \ 
size n) 

Averages 

Standard deviations 
Ranges 

X' X'±Aa',OV 
X' ± A,R,/ 

c-,a' Bl0-' and B>a' 
d2a , or     DUT' and D2a', or 
R„' D,Rti' and D4R,; 

* When using s = x -(ÄiJzJQ2 for the standard deviation of a sample instead of a = . p(-XV - ^)2    one mnst 
V      M — 1 \ n 

make the following changes in the formulas for the central line and for the 3-sigma limits: 

(1)   Replace A, by .. /"^— A, ; replace s by s ; make no change in B., and B, ; 

(•2)   Replace c, , B, , B, by J--~ c, , J^ ^--- B, and J-™     B, , respectively. 

, f,7,MS m.ao1rial is- rel^od"rt;d from the American Standard Cunlrul Chart Method of Controlling Quality During Production, Z1.3—1958, Copyright 
lif.iy hy ASA, copies of which may he purchased from the American Standards Association al  10 East 401 h Street, New York 16, N. Y. 
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CHAPTER  19 

STATISTICAL TECHNIQUES FOR ANALYZING EXTREME-VALUE DATA* 

19-1     EXTREME-VALUE DISTRIBUTIONS 

Classical applications of statistical methods, 
which frequently concern average values and 
other quantities following the symmetrical nor- 
mal distribution, are inadequate when the quan- 
tity of interest is the largest or the smallest in a 
set of magnitudes. Applications of the tech- 
niques described in this Chapter already have 
been made in a number of fields. Meteorologi- 
cal phenomena that involve extreme pressures, 
temperatures, rainfalls, wind velocities, etc., 
have been treated by extreme-value techniques. 
The techniques are also applicable in the study 
of floods and droughts. 

Other examples of extreme-value problems 
occur in the fracturing of metals, textiles, and 

other materials under applied force, and in 
fatigue phenomena. In these instances, the 
observed strength of a specimen often differs 
from the calculated strength, and depends, 
among other things, upon the length and vol- 
ume. An explanation is to be found in the 
existence of weakening flaws assumed to be dis- 
tributed at random in the body and assumed 
not to influence one another in any way. The 
observed strength is determined by the strength 
of the weakest region — just as no chain is 
stronger than its weakest link. Thus, it is 
apparent that whenever extreme observations 
are encountered it will pay to consider the use of 
extreme-value techniques. 

19-2    USE OF EXTREME-VALUE TECHNIQUES 

19-2.1     LARGEST VALUES 

A simplified account is given here. Primary 
sources for the detailed theory and methods are 
References 1, 2, 3, which also contain extensive 
bibliographies. References 4 through 10, also 
given at the end of this Chapter, provide addi- 
tional information and examples of applications. 

Figure 19-1 illustrates the frequency form of a 
typical curve for the distribution of largest 
observations. 

The curve in Figure 19-1 is the derivative of the 
function 

$(y) = exp [-exp (-y)]. 

Unlike the normal distribution, this curve is 
skewed, with its maximum to the left of the 
mean and the longer of its tails extending to the 
right. The outstanding feature of such a dis- 
tribution is that very large values are much 
more likely to occur than are very small values. 
This agrees with common experience. Very 
low maximum values are most unusual, while 
very high ones do occur occasionally. Theo- 
retical considerations lead to a curve of this 
nature, called the distribution of largest values or 
the extreme-value distribution. 

In using the extreme-value method, all the 
observed maxima, such as the largest wind 
velocity observed in each year during a fifty- 

* Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled "Some Applications of Extreme- 
Value Methods" by E. J. Gumbel and J. Lieblein; and, from National Bureau of Standards Technical News Bulletin 38, No. 2, pp. 29-31, February 
19Ö4, from article entitled "Extreme-Value Methods for Engineering Problems". 
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Figure 19-1.    Theoretical distribution of largest values. 

Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled "Some Applications of Extreme- 
Value Methods" by E. J. Gumbel and J. Lieblein. 

year period, are first ranked in order of size from 
the smallest to the largest, 

Xl<X1< <!,<... <Xn. 

A plotting position (X,:, P,) is obtained for each 
observation by associating with X,- the proba- 
bility coordinate P, = i/(n + 1), where i is the 
rank of the observation, counting from the 
smallest. The data are plotted on a special 
graph paper, called extreme-value probability 
paper*, designed so that the "ideal" extreme- 
value distribution will plot exactly as a straight 
line. Consequently, the closeness of the plotted 
points to a straight line is an indication of how 
well the data fit the theory. 

* Extreme-value probability paper may be obtained 
from three sources: (a) U. S. Department of Commerce, 
Weather Bureau; (b) Environmental Protection Section, 
Research and Development Branch, Military Planning 
Division, Office of the Quartermaster General; (c) Techni- 
cal and Engineering Aids for Management, 104 Belrose 
Ave., Lowell, Mass. 

Extreme-value probability paper has a uni- 
form scale along one axis, usually the vertical, 
which is used for the observed values as shown 
in Figure 19-2. The horizontal axis then serves 
as the probability scale, and is marked accord- 
ing to the doubly-exponential formula. Thus, 
in Figure 19-2, the space between 0.01 and 0.5 is 
much less than the space between 0.5 and 0.99. 
The limiting values zero and one are never 
reached, as is true of any probability paper de- 
signed for an unlimited variate. 

An extreme-value plot (Figure 19-2) of the 
maximum atmospheric pressures in Bergen, 
Norway, for the period between 1857 and 1926, 
showed by inspection that the observed data 
satisfactorily fitted the theory. Fitting the line 
by eye may be sufficient. Details of fitting a 
computed line are given in Gumbel.(" From 
the fitted straight line, it is possible to predict, 
for example, that a pressure of 793 mm corre- 
sponds to a probability of 0.994; that is, pres- 
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Figure 19-2.    Annual maxima of atmospheric pressure, Bergen, Norway, 1857-1926. 

Adapted with permission from The American Statistician, Vol. 8, No. 5, December 1954, from article entitled "Some Applications of Extreme- 
Value Methods" by E. J. Gumbel and J. Lieblein. 
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sures of this magnitude have less than one 
chance in 100 of being exceeded in any par- 
ticular year. 

In studies of the normal acceleration incre- 
ments experienced by an airplane flying through 
gusty air, see Gumbel and Carlson/4' page 394, 
an instrument was employed that indicated only 
the maximum shocks. Thus, only one maxi- 
mum value was obtained from a single flight. 
A plot representing 26 flights of the same air- 
craft indicated that the probability that the 
largest recorded gust will not be exceeded in any 
other flight was 0.96 ; i.e., a chance of four in 100 
of encountering a gust more severe than any 
recorded. A more recent study, Lieblein, (i> 
presents refinements especially adapted to very 
small samples of extreme data, and also to 
larger samples where it is necessary to obtain 
the greatest amount of information from a 
limited set of costly data. 

19-2.2    SMALLEST VALUES 

Extreme-value theory can also be used to 
study the smallest observations, since the corre- 
sponding limiting distribution is simply related 
to the distribution of largest values. The steps 
in applying the "smallest-value" theory are 
very similar to those for the largest-value case. 
For example, engineers have long been inter- 
ested in the problem of predicting the tensile 
strength of a bar or specimen of homogeneous 
material. One approach is to regard the speci- 
men as being composed of a large number of 
pieces of very short length. The tensile strength 
of the entire specimen is limited by the strength 
of the weakest of these small pieces. Thus, the 
tensile strength at which the entire specimen 
will fail is a smallest-value phenomenon. The 
smallest-value approach can be used even 
though the number and individual strengths of 
the "small pieces" are unknown. 
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This method has been applied with consider- 
able success by Kase(fi) in studying the tensile 
testing of rubber. Using 200 specimens ob- 
tained so as to assure as much homogeneity as 
possible, he found that the observed distribution 
of their tensile strengths could be fitted remark- 
ably well by the extreme-value distribution for 
smallest values. The fitted curve given by this 
data indicates that one-half of a test group of 
specimens may be expected to break under a 
tensile stress of 105 kg. cm.- or more, while only 
one in 1,000 will survive a stress exceeding 
126 kg./cm.-'. 

Other examples of applications are given by 
Epstein and Brooks"» and by Freudenthal and 
Gumbel<8,(9'. 

19-2.3    MISSING OBSERVATIONS 

It has been found that fatigue life of speci- 
mens under fixed stress can be treated in the 
same manner as tensile strength — by using the 
theory of smallest values. An extensive appli- 
cation of this method is given in Lieblein and 
Zelen'1'». 

In such cases, tests may be stopped before all 
specimens have failed. This results in a sample 
from which some observations are missing — a 
"censored" sample. Methods for handling 
such data are included in Lieblein and Zelen001. 
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CHAPTER 20 

THE USE OF TRANSFORMATIONS 

20-1     GENERAL REMARKS  ON THE NEED  FOR TRANSFORMATIONS 

The scale on which a property is usually measured (that is, the units in which it is ordinarily ex- 
pressed) may not be the most suitable for statistical analysis and interpretation. Statistical tech- 
niques are always based on assumptions. The validity of results obtained through their use in practice 
always depends, sometimes critically, on the assumed conditions being met, at least to a sufficient 
degree of approximation. Essentially all of the standard techniques for the statistical analysis 
and interpretation of measurement data (e.g., those given inAMCP 706-110,Section 1, Chapters 1 
through 6) are based upon assumed normality of the underlying distribution involved; and many 
(e.g., the majority of those considered in Chapters 5 and 6) also require (at least approximate) 
equality of variances from group to group. Furthermore, the analysis-of-variance tests considered 
inAMCP 706-112,Section 3, depend not only on normality and equality of variances among sub- 
groups, but also on additivity of the "effects" that characterize real differences of interest among 
the materials, processes, or products under consideration; see Eisenhart.01 

Real-life data do not always conform to the conditions required for the strict, or even approxi- 
mate, validity of otherwise appropriate techniques of statistical analysis. When this is the case, 
a transformation (change of scale) applied to the raw data may put the data in such form that the 
appropriate conventional analysis can be performed validly. Bartlett'21 provides a good general 
survey of the practical aspects of transformations, together with a fairly complete bibliography 
of the subject to 1947. 

20-2    NORMALITY AND NORMALIZING TRANSFORMATIONS 

20-2.1     IMPORTANCE OF NORMALITY 

The dependence of many standard statistical techniques on normality of the underlying dis- 
tribution is twofold. First, standard statistical techniques are in the main based on the sample 
mean X, and the sample estimate s of the population standard deviation. A normal distribution 
is completely determined by its mean m and its standard deviation <r ; and in sampling from a normal 
distribution, X and s together summarize all of the information available in the sample about the 
parent distribution. This 100% efficiency of X and s in samples from a normal distribution does 
not carry over to non-normal distributions. Consequently, if the population distribution of a 
characteristic of interest is markedly non-normal, confidence intervals for the population mean m 
and standard deviation <r based on X and s will tend to be wider, and tests of hypotheses regarding 
m or a will have less power, than those based on the particular functions of the sample values that 
are the efficient estimators of the location and dispersion parameters of the non-normal distribution 
concerned. In other words, use of X and s as sample measures of the location and dispersion 
characteristics of a population distribution may result in an intrinsic loss of efficiency in the case 
of markedly non-normal distributions, even if the correct sampling distributions of x-, t, F, etc., 
appropriate to the non-normal distribution concerned are employed. 
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Second, the customary tables of percentage points of x2, t, F, and of factors for confidence 
intervals, tolerance limits, and so forth, are based on the assumption of sampling from a normal 
distribution. These percentage points, tolerance-limit factors, and so forth, are not strictly valid 
when sampling from non-normal distributions. The distribution of s-, which is identically that 
of XWe for v degrees of freedom in the case of sampling from a normal distribution, is especially 
sensitive to departures from normality. Consequently, the actual significance levels, confidence 
coefficients, etc., associated with the procedures of Chapter 4 may differ somewhat from their 
nominal values when sampling from only moderately non-normal material is involved. Fortu- 
nately, the percentage points of t- and J^-tests of hypotheses about means are not so sensitive to 
departures from normality, so that the standard tests of hypotheses about, and confidence intervals 
for, population means will be valid to a good approximation for moderately non-normal populations 
— but there may be some loss of efficiency, as noted above. 

20-2.2    NORMALIZATION BY AVERAGING 

Many physical measurement processes produce approximately normally-distributed data; some 
do not. Even when measurement errors are approximately normally distributed, sampling of a 
material, product, or process may be involved, and the distribution of the characteristic of interest 
in the sampled population may be definitely non-normal — or, at least, it may be considered risky 
to assume normality. In such cases, especially when the basic measurements are plentiful or easy 
to obtain in large numbers, an effective normalization almost always can be achieved — except 
for extremely non-normal distributions — if the questions of interest with respect to the population 
concerned can be rephrased in terms of the parameters of the corresponding sampling distribution 
of the arithmetic means of random samples of size four or more. This normalizational trick is of 
extremely wide applicability; but results, of course, in a substantial reduction in the number of 
observations available for statistical analysis. Consequently, it should not be applied when the 
basic measurements themselves are few in number and costly to obtain. In such cases, if assump- 
tion of normality of the population distribution of the basic observations is considered risky, or 
definitely is known to be false, then we may take recourse in available distribution-free techniques; 
see Chapter 16. 

20-2.3    NORMALIZING TRANSFORMATIONS 

If we know from theoretical considerations or previous experience that some simple transforma- 
tion will approximately normalize the particular kind of data in hand, then, both for convenience 
and in the interest of efficiency, we may prefer to use normal-based standard techniques on the 
transformed data, rather than use distribution-free techniques on the data in their original form. 
For example, certain kinds of data are quite definitely known to be approximately normal in logs, 
and the use of a log transformation in these cases may become routine. Indeed, this transformation 
is the subject of an entire book which is devoted to its theoretical and empirical bases, and its uses 
and usefulness in a wide variety of situations; see Aitchison and Brown.(l) 

Table 20-1 gives a selection of transformations that are capable of normalizing a wide variety 
of non-normal types. They are arranged in groups according as the range of variation of the original 
variable X is from 0 to <* , from 0 to 1, or from — 1 to +1. Their "normalizing power" is exempli- 
fied in Figure 20-1. For the theoretical bases of these and other normalizing transformations, the 
advanced reader is referred to the papers of Curtiss(4) and Johnson.<5> 
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Original Distributions Transformed Distributions 

(a) (a) 

(b) 

MODE-3.00 

MEDIAN- 4.35 
MEAN-500 

(b; 

(e) 

If* 

MODE-1.87 

MEDIAN-1 92 

MEAN-I 94 

{I) MOOE<MEM 

»MEDIAN 

-0.5 
<2)MEAN-83 

MEDIAN-.85 

MODE -.90 

(c) 

MEAN-140 

MEDIAN-I 47 

MODE-161 

riotaFi 
(1) MODE-MEAN 

■ MEDIAN 

■0 

(2) MODE-1.61 

/-.    MEAN-183 

]^-N    /       \MEDIAN-I.75 

(d) 

(e) 

(d) 

(1) MEAN-MEDIAN 

•MODE-0 

(2) MEAN-.776 

MEDIAN- 82 5 

MODE-.897 

(e) 

y = arcsinN/x- 

(1) MEAN-MEDIAN 

-MODE 

■ 45 0 
(2) MEAN-66 9 

MEDIAN-674 

MODE-68 3 

(1) ME AN- MEDIAN 

MODE-0 

IS MODE -1163 

\    MEDIAN-II67 

\   MEAN 1 169 

Figure 20-1.    Normalizing effect of some frequently used transformations. 
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20-3    INEQUALITY OF VARIANCES, AND VARIANCE-STABILIZING 
TRANSFORMATIONS 

20-3.1     IMPORTANCE OF EQUALITY OF VARIANCES 

Many standard statistical techniques for the analysis and comparison of two or more materials, 
products, or processes with respect to average performance depend on equality of variability within 
groups. When the magnitude of the common within-groups variance a2 is unknown, it is cus- 
tomary (as in Procedures of Paragraphs 3-3.1.1, 3-3.2.1, and 3-4) to combine the sample evidence 
on variability of performance within the respective groups, to obtain a pooled estimate of a-2. The 
advantages of pooling are: the resultant pooled estimate s2 is a more precise estimate of a- than is 
available from data of any of the individual groups alone; it leads to narrower confidence 
intervals for each of the individual group means, and for differences between them; and hence, it 
leads to more powerful tests of significance for differences between group means. If, however, 
the assumption of equality of within-group variances is false, then the resultant pooled s- does not 
provide a valid estimate of the standard error of any of the group averages, or of any of the differ- 
ences between them. When marked inequalities exist among the true within-group variances, the 
standard errors of individual group averages and of differences between them, derived from a 
pooled s2, may be far from the true values; and confidence intervals and tests of significance based 
on the pooled s- may be seriously distorted. 

Thus, in Chapter 3, we emphasized that the standard Mests for the comparison of averages of 
two groups of unpaired observations (Paragraphs 3-3.1.1 and 3-3.2.1) are based on the assumption 
of equal variances within the two groups. Furthermore, we noted that if the two samples involved 
are of equal size, or of approximately equal size, then the significance levels of the two sided £-test 
of the difference of two means (Paragraph 3-3.1.1) will not be seriously increased (Figure 3-9, 
curve (A)); but the power of the test may be somewhat lessened if the two variances are markedly 
unequal. Similarly, two-sided confidence intervals derived from t for the difference between the 
two population means will tend to be somewhat narrower than if proper allowance were made for 
the inequality of the variances, but the effective confidence coefficient will not be seriously less 
than the value intended. These remarks carry over without change to one-sided i-tests (Para- 
graph 3-3.2.1) and to the corresponding one-sided confidence intervals. In other words, the com- 
parison of averages of two groups by means of the standard two sample <-test procedures and 
associated confidence intervals results only in some loss of efficiency when the samples from the two 
groups are of equal size, and the reduction in efficiency will be comparatively slight unless the two 
variances are markedly different. 

In contrast, if the samples from the two groups differ appreciably in size, then not only may the 
significance levels of standard two-sample i-tests be seriously affected (Figure 3-9, curve (B)) but 
their power (i.e., the entire OC curve) also may be altered considerably, especially if the smallest 
sample comes from the group having the larger variance. Hence, in the case of samples of unequal 
size, inequality of variances may invalidate not only a standard two-sample «-test for comparison 
of averages, but also the associated confidence-interval procedures for estimating the difference 
between the corresponding population means. 

The foregoing remarks carry over without modification to the Studentized-range techniques 
given in Paragraph 3-4 for the comparison of averages of several groups, and in AMCP 706-112, 
Section 3, Chapters 12 and 13, for the comparison of averages and groups of averages in complex 
and more specialized forms of comparative experiments. In all of these cases, if the true within- 
group variances differ appreciably from one group to another (or from subgroups to subgroups), 
there ordinarily will be a loss of efficiency in the estimation of, say, product means, or treatment 
differences. Similarly, there will be a loss of power in tests of significance. If the samples from 
the respective groups are of unequal sizes and the true within-group variances are markedly un- 
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equal, these losses mpy be substantial. Some of the estimates of group means and differences 
between group means may have much smaller or much larger standard errors than others, so that 
pair-wise i-tests, or Studentized-range tests, derived from a pooled standard-deviation estimate s 
may correspond to significance levels far from those intended; and the actual effective confidence 
coefficients associated with the corresponding confidence intervals may differ substantially from 
one another, and from their nominal values. 

20-3.2    TYPES OF VARIANCE INHOMOGENEITY 

The situations in which variance inhomogeneity may present a problem can be divided into 
two types: 

(a) Situations in which there is a functional dependence of the variance of an observation 
on the mean of the group to which it belongs. Functional dependence of the variance of an obser- 
vation on its mean or expected value is an intrinsic characteristic of many non-normal distributions. 
The second column of Table 20-1 gives some specific examples. Or, it may be a basic property of 
the phenomena under investigation quite apart from the form of the underlying distribution 
involved. Thus, in studies of various types of "growth" phenomena, the amount of variation 
present at any given stage of the "growth," as measured by the standard deviation of observations 
at that stage, is apt to be proportional to the average size characteristic of that stage. 

TABU 30-1.    SOME FREQUENTLY USED TDANSFOtMATIOm 

Transformation 
r-im 

Appropriate Situation 

Kongo of 
Voriobto 

log. 
1 - X 

or 

X 
' 1 - X 

log, X 

or 

log„X 

- 2 tanh ' I2X - 1) 

arcsin \'X (radians) 

or 

arcsin \'X (degrees) 

Characteristics of 
Distribution 

Variance    proportional    to 
the mean 

Approximate Variance 
on Transformed Scale 

.i^irwp. 

Example* of Appropriate Distributions 

Distribution and Us 
Parameters 

Approximate Variance on 
Transformed Scale 

Continuous 
Gamma distributions 

Mean = pä 
Var - p6' 

Standard deviation propor- 
tional to mean 

Var - x< imean)' :  for log., *' 
For log,,, 0.189 X' 

Discrete 
Poisson distribution* 

X - 0, 1, 2  
Mean = m 

Var = m 

Distributions of s- in samples of size n 
for normal distribution 

Mean = a- 

2„<        /    2 
Var - :',-(.!,)< 

For log,, 

For login, 

Type A 
Mean = m 

Var = A* m (I - 

For log,, 

For log,,. 

m |1 - m) 

0.189 X1 

m (1 - m) 

Beta distributions 

Mean =      , 

TypeB 
Mean = m 

Var = X1 m* (1 - 

Mean = m 
Var = \- m (1 - m) 

For log,, X1 

For log,,,, 0.189 A' 

W 
<P + ?)' <P +■? + 1) 

Empirical 

For radians, XV4 
For degrees, 821 X! 

Continuous 
Beta distributions 

!  For radians, 

For degrees. 

-1 < X < +1 Var = AMI  - (mean);l 

Sensitivity Testing 

Discrete 
Binomial distributions^ 

X = 0, In, 2,'n, . . . , n n 
Mean = p 

Var = p (1 - p) n 

For radians, 1 4n 
For degrees, 821n 

For j log,, X1 

For log,,,, 0.754 X: 
Distribution of correlation coefficient r    „       . 1 
in samples from a normal distribution * °^" n -3 

"— = •[■ -'-»'' + ■■■] lF«"*-°,-M3 
v"_-^_:^+J!?--LL 

See ORDP 20-111, Chapter 10 

* For 1 <  m<  10 . use the Freeman-Tukey''*' modification Y  - \ (y/X + VX + 1). 
t Use lot, \X * 1) or loo (X + 1) to avoid difficulties with zeros in the data, 
t For greater accuracy, use Bartlett's ■' modification, 

for  X  = 0, V  - arcsin Vl/in 
andJf  -  l.r  - arcsin V(in  -"lj/4n. 
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(b) Situations in which there is present incidental desultory heterogeneity of variance, arising 
from inadequate control of conditions or procedure; from differences or shortcomings of equipment 
or personnel; from use of inhomogeneous material or inadequate sampling methods; or from other 
disturbing features (e.g., partial failure of one or more of the products or treatments) that tend to 
produce less, or greater, variability among observations in some groups than in others in an irregular 
manner. 

Situations of the first type, in which the variance inhomogeneity present is simply the conse- 
quence of a functional dependence of the variance of an observation on its mean or expected value, 
are most easily handled statistically by employing an appropriate variance-stabilizing transforma- 
tion. Details are given in Paragraph 20-3.3. Statistical analyses of data arising from the second 
irregular type of variance heterogeneity should be left to experts. Variance-stabilizing transforma- 
tions are of little or no help in such situations. Helpful advice, illustrated by worked examples, 
can be found in two papers by Cochran/6' 7) Recourse usually must be made to subdividing the 
experimental observations into approximately homogenous subgroups; or to omission of parts 
of the experiment that have yielded data very different from the rest. An overall analysis may be 
impossible. Combination of the pertinent evidence from the respective subdivisions of the data 
may involve complex weighting and laborious arithmetic. Various procedures for the combination 
of evidence from different experiments, or from separately analyzed parts of a single experiment, 
have been examined and evaluated in a later paper by Cochran.(8) Irregular heterogeneity of 
variance should be avoided whenever possible, by adequate design of experiments and careful 
attention to the control of conditions, procedures, etc. 

20-3.3    VARIANCE-STABILIZING TRANSFORMATIONS 

When experimentally determined values Xi, X2, . . ., are such that their variances a\i are 
functionally dependent on their mean values mx. in accordance with a common functional relation- 
ship, say 

'h =0(m.Vi),(i = l,2,...), (20-1) 

then we may gain the advant?ges of variance homogeneity in the statistical analysis of such data 
by replacing the original values Xi, X2, ■ ■ ., by transformed values Y\ = f (X,) ,Y2=f (X2), . . . , 
whose variances a\{ are (at least, to a good approximation) functionally independent of their mean 
values Wr,. Five such variance-stabilizing transformations Y = / (X) are given in the first column 
of Table 20-1; the "situations" (i.e., the range of X and the form of the function g (m) in equation 
(20-1)) for which each is appropriate* are indicated in the second column; and the third column 
shows the approximate variances of the corresponding transformed values Y, as given by the 
approximate formula 

ar~[f'(m)]*\-, (20-2) 

where /' (m) denotes the derivative of the function y = / (X) evaluated at X = m, the mean value 
of the original variable X. 

Figure 20-2 presents comparisons of the actual values of the variances a\ of the transformed 
values Y and the corresponding approximate values given by formula (20-2), for four of the trans- 
formations listed in Table 20-1. 

* The third transformation in the first column of Table 20-1, log z ~ , is variance-stabilizing only for "situations" 
1 — Ji. 

of type B. 
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Panel 
(1) 

Panel 
(2) 

Dependence of the variances of two functions of a sample 
value X from a Poisson distribution on the Poisson 
parameter, m .    (1) Variance of y/X; (2) Variance of 

j]Vx + VT+i\ ■ 

The ratio of the variance of log.s2 to its approximate 
value 2/(n — 1) in samples of size n from a normal 
distribution. 

Panel 
(3) 

Panel 
(4) 

Dependence of the variances of three functions of a sample 
proportion X/n on the population proportion p when 
the sample size is 10.    (1) 40 Var (X/n) ; 
(2) 40 Var (sin"1 V'X/n) ; (3) 40 Var (Vß) , where 

!sin' Vl/4 n for X =0 

sin"1 VX~/n for X = 1, 2, . . . , n 

sin-1 \/(4 n l)/4ntorX = n 

Dependence of the variances of three functions of a sample 
proportion X/n on the population proportion p when 
the sample size is 20 .    (1) 80 Var (X/n) ; 
(2) 80 Var (sin^1 VX/n) ; (3) 80 Var fa$) , where 

<p 

("sin~' Vl/4 n for X =0 

,  - ^sin-1 y/Xjn for X = 1, 2 n - 1 

'sin"1 -\/(4 n — l)/4 n for X = n 

Panel 
(5) 

Panel 
(6) 

Dependence of the variance of the sample correlation 
coefficient r and of the variance of the transformation 
z' = s log ( r^~ ) °n the true correlation coefficient p 

for sample size n = 5 .    (1) Variance of z' ; 
(2) Variance of r . 

Dependence of the variance of the sample correlation 
coefficient r and of the variance of the transformation 

z' = - log ( 1 on the true correlation coefficient p 

for sample size n = 11 .    (1) Variance of z' ; 
(2) Variance of r . 

Figure 20-2.    Variance-stabilizing effect of some frequently used transformations. 
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The logarithmic transformation log s2 is "variance-stabilizing" for all values of re, since the 
variance of log s2 is functionally independent of its mean for all values of re ; and, as is evident from 

2 
panel 2 of Figure 20-2, the variance of log s2 is close to its limiting value ——r for all values of 

n > 5, say.    For further details on this transformation, see Bartlett and Kendall."' 

The other four transformations depicted in Figure 20-2 are variance-stabilizing (to a good 
approximation at least), only for favorable combinations of the parameters concerned. Thus, in 
the case of the Poisson distribution (panel 1), we see that the variance of y/X is independent of mx 

to a good approximation only for m > 10, say; but the variance of the more sophisticated trans- 

formation | (\/X + \/X + 1), devised by Freeman and Tukey'"", is nearly constant for re > 3, 
say. A table to facilitate the use of this transformation has been published by Mosteller et allu • I2\ 
Similarly, for the binomial distribution: from panel 3 we see that when re = 10, the variance of 

arcsin y/X/n is no more stable as p ranges from 0 to 1, than is the variance of X/n itself; but 
with Bartlett's modifications'"1'■ °" for X = 0 and X = 1,  the variance is essentially constant 

fat -^—j from p = 0.25 to p = 0.75.    On the other hand, when re = 20 (panel 4), the variance 

of the unmodified transformation is nearly constant from p = 0.25 to p = 0.75, so that the un- 
modified transformation is quite adequate for this range of p.    However, by adopting Bartlett's 

modifications, the range of variance constancy  fat --'■—)  can be extended  to p = 0.12 and 

p = 0.88.    When re = 30, the unmodified transformation is adequate from p = 0.18 to p = 0.82, 

and with Bartlett's modifications, nearly constant variance f at —"-r-    j is achieved from p = 0.08 

1 + r 
to p = 0.92.    Finally, panels 5 and 6 show the variance-stabilizing power of the log z trans- 

formation of the correlation coefficient r, due to Fisher/151 for n = 5 and re = 10. 

Figure 20-2 and the foregoing discussion serve to bring out a very important feature of variance- 
stabilizing transformations: over any range of favorable circumstances for which a particular 
variance-stabilizing transformation Y has an essentially constant and known variance aI , we also 
have, in addition to the advantages of variance constancy, all of the attendant advantages of 
'Vknown" techniques. However, in practice, before proceeding on the assumption that a'l has a 
particular theoretical value, we should always evaluate an estimate of el, say s2-, from the data 
on hand, and check to see whether si is consistent with the presumed theoretical value of a I. If 
it is, then "cr-known" techniques should be used in the interest of greater efficiency. On the other 
hand, if the magnitude of sf- indicates that the effective value of al is substantially greater than 
its theoretical value, then 'V-unknown" techniques, based on sy, must be used. In such cases; 

the excess of s2- over the theoretical value of a'l indicates the amount of additional variation present 
in the data, which, in principle at least, could be eliminated in future experiments of the same 
kind by improved experiment design and measurement-error control. 
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20-4    LINEARITY, ADDITIVITY, AND ASSOCIATED TRANSFORMATIONS 

20-4.1     DEFINITION AND IMPORTANCE OF LINEARITY AND ADDITIVITY 

Experimental data are much easier to interpret when the effects of the variables concerned are 
linear and additive. 

When only a single independent variable x is involved, then linearity of the phenomena under 
investigation means that the response y corresponding to input x can be expressed in the form 

y = /So + ßix (20-3) 

when x and y are expressed on appropriate scales. Equation (20-3) is the equation of a straight 
line in the x, ^/-plane. The analysis and interpretation of such linear relationships derived from 
experimental data are considered in detail in Chapter 5. 

In the case of two independent or input variables, say x and z, if the dependence of the response y 
on these two variables is of the form 

y =  ßa + ßiX + ßiZ + ßzXZ 
= (0o + ßiZ) + (0, + ß,z)x (20-4) 
= (ft, + ßix) + (02 + ß,x)z 

then clearly the response y depends linearly on x for fixed values of z, and linearly on z for fixed 
values of x; but the effect of changes in x and z will be additive if and only if the cross product 
term is missing (i.e., 03 = 0). Only in this case will a given change in x, say Sx, produce the same 
change in y regardless of the value of z, and a given change in z, say Sz, produce the same change 
in y regardless of the value of x; and hence together produce the same total change in y, irrespective 
of the "starting values" of x and z. In other words, for linearity and additivity in the case of two 
independent variables, the response surface must be of the form 

y = 0„ + ßlX + 022 (20-5) 

which is the equation of a plane in the three-dimensional x, z, y-space. 

Similar remarks extend to the case of three or more independent variables, in which case for 
linearity and additivity the response surface must be of the form 

y = 0o + ßa + ß.,z + ßtu + 04i> + ßiio + ... (20-6) 

which is the equation of a hyperplane in the (x, z, u, v, w, . . . , y) -space. 

When, as in equation (20-4), the cross-product term ß&z is present, the effect of a given change 
in x, say 8x, will depend upon the corresponding value of z; the effect of a given change in z, 
say 8z, will depend upon the corresponding value of x; and the joint effect of 5x and Sz will depend 
on the "starting values" of x and z. In such cases, we say that there is an interaction between the 
factors x and z with respect to their effect on the response y. Hence, in the contrary case, when 
the changes in y resulting from changes in the two variables x and z are additive, it is customary 
to say that there is no interaction between x and z with respect to their effect on the response y. 

Many of the standard techniques of statistical analysis, especially analysis-of-variance tech- 
niques, depend explicitly on linearity and additivity of the phenomenon under investigation. Thus, 
the usual analysis of randomized-block experiments (Paragraph 13-3.2) is based on the assumption 
that the response y,, of the ith treatment in the ;'th block can be expressed in the form 

y;j = <Pi + ßj, (20-7) 

where p,< serves to characterize the expected response of the ith. treatment, and may be regarded 
as the average response of the ith treatment over all of the blocks of the experiment; and 0, charac- 
terizes the effect of the /th block, and is the amount by which the response in the /th block of any 
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one of the treatments may be expected to differ from its average response over all blocks. Similarly, 
in the analysis of Latin-square experiments (Paragraph 13-5.2.1), it usually is assumed that yiim, 
the response of the ith treatment under conditions corresponding to the jth row and the mth column, 
can be represented in the form 

yiJm  =  Vi + Pj + *m, (20-8) 

where, as before, p,- serves to characterize the ith treatment, and may be regarded as the expected 
response for the ith treatment averaged over all combinations of conditions (corresponding to the 
rows and columns) included in the experiment; pj serves to characterize the j'th row, and may be 
regarded as the amount by which the response of any one of the treatments may be expected to 
differ under the conditions of the /th row from its response averaged over all of the experiment; 
and Km serves to characterize the mth column, and may be regarded as the amount by which the 
response of any treatment may be expected to differ under the conditions of the mth column from 
its response averaged over the entire experiment. 

In the case of factorial-type experiments involving many factors (Chapter 12), complete addi- 
tivity as defined by equation (20-6) is rarely realistic. However, if internal estimates of experimental 
error are to be obtainable from the experimental data in hand (Paragraph 12-1.2.1), then at least 
some of the higher-order interaction terms, involving, say, three or more factors (e.g., terms in 
xzw, xzu, . . . ; xzwu, . . . ; xzwuv, . . .) must either be absent or at least of negligible magnitude 
in comparison to <r, the actual standard deviation of the measurements involved. 

Thus the importance of additivity in the analysis and interpretation of randomized-block, Latin- 
square, and other multi-factor experiments is seen to be twofold: first, only when the effects of 
treatments and blocks, or treatments and rows and columns, etc., are strictly additive can we use 
a single number <p{ to represent the effect of the ith treatment under the range of conditions included 
in the experiment; and second, only when strict additivity prevails will the residual deviations of 
the observed responses Y from response surfaces of the form of equation (20-5), (20-6), (20-7), or 
(20-8), provide unbiased estimates s2 of the actual experimental-error variance a- associated with 
the experimental setup concerned. In the absence of strict additivity, for example, when "inter- 
action" cross-product terms (<pß),j need to be added to equation (20-7), the actual effect of the ith 
treatment will depend upon the conditions corresponding to the particular block concerned, being 
<Pi 4- (<pß)n for the first block, <pi + (<pß) a for the second block, etc. Furthermore, if the experi- 
mental data are analyzed on the supposition that equation (20-7) holds, whereas the cross-product 
terms actually are necessary to describe the situation accurately, then the resulting residual sum 
of squares will contain a component due to the sum of the squares of the interaction terms 
((pß)ij. Consequently, the resulting variance estimates s- will tend to exceed the true experimental- 
error variance o-, to reduce the apparent "significance" of experimental estimates of the actual 
treatment effects <pit and to yield unnecessarily wide confidence interval estimates for the v>;, and 
for differences between them. Worse, the customary distribution theory will no longer be strictly 
applicable, so that the resulting tests for significance and confidence interval estimates will, at best, 
be only approximately valid. 

Therefore, it is highly desirable that the effects of treatments and other factors involved in a 
complex experiment, if not additive, at least have negligible interactions, in the sense that the 
corresponding terms needed to depict the situation accurately be individually and collectively 
negligible in comparison with the corresponding main effects (Vl-, ßit etc.) and also with respect 
to the true experimental-error variance o-2. 
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20-4.2    TRANSFORMATION OF DATA TO ACHIEVE LINEARITY AND ADDITIVITY 

It should be noted that in connection with the linear relationship in equation (20-3) we added a 
qualifying phrase "when x and y are expressed on appropriate scales." This qualification was 
added because, if a response y depends non-linearly on the corresponding input x and the form of 
this non-linear relationship is known, then sometimes it is possible to make a transformation of one 
or both of the variables so that the relationship between the transformed variables y' and x' is of 
the form of equation (20-3) with y' in place of y and x' in place of x. A number of such linearizing 
transformations are considered in Paragraph 5-4.4, and are summarized in Table 5-4. 

The art of transformation of data to achieve additivity is far less well developed than are the arts 
of transformation to achieve normality, constancy of variance, and linearity. The only situation 
that comes to mind for which the exact transformation needed to achieve additivity is obvious, 
is the case where, say, treatment, row, and column effects are multiplicative in the original units, 
so that instead of equation (20-8) we have 

yijm = win*. (20-9) 

On taking logarithms this becomes 

log yUm  = log «pi + log Pj + log Km, (20-10) 

which clearly is of the form given in equation (20-8) in terms of the variables 

y'ijm = log yijm, (p'i = log <f>i> Pi = log Pj, and K',K = log «,„. 

Fortunately, it often happens that a transformation chosen for the purpose of achieving con- 
stancy of variance also improves the situation to some extent with respect to linearity and addi- 
tivity. But, this will not always be the case. In some situations, if we can find a transformation 
that improves linearity or additivity we may choose to forego the advantages of constancy of 
variance. Such is the case, for example, when we adopt the probit transformation (Chapter 10) 
in order to achieve linearity, with the consequent necessity of performing weighted analyses of the 
transformed data to allow for non-constancy of variance. In other cases, variance constancy may 
be so advantageous that we are willing to proceed on the assumption that additivity also is achieved 
by the transformation to stabilize variance — a situation explored by Cochran06' for the cases of 
binomial or Poisson-distributed data. 

20-5    CONCLUDING REMARKS 

One important characteristic of all of the transformations given in Table 20-1 is that they all 
are order preserving: the relative rank order (with respect to magnitude) of the original individual 
measurements Xi, X2, . . . is strictly preserved in their transforms Yi = f (Xi), Y2 = / (X2) .... 
Consequently, the relative rank order of subgroup means Xa), Xit), ... of the original measure- 
ments_will usually — but not necessarily* — be preserved in the corresponding subgroup means 
Y(D , P(2), . . . evaluated from the transformed data. When these subgroup means on the F-scale 
are transformed back to the Z-scale by the inverse transformation X = g (Y), their transforms 
X'u) = g (PUD) , X'm = g (Y(2i), . . . will always be in the same relative rank order as the subgroup 

* For example, let the original data consist of the following two groups of two observations each: 1 , 10 and 5,5. 
Then, Xi = 5.5 , X2 = 5 , and Xi > ^». If now we change to Y = log,« X , the data become 0 , 1 and 0.699 , 0.699 
so that F, = 0.5 , F2 = 0.699 , and ?, < P2 . 
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means Tw, Y(2), ... on the Y-scale; and hence, usually — but not always — in the same relative 
rank order as the original subgroup means X{D , Xm, ... on the X-scale. In other words, by 
using one of these transformations, we ordinarily will not seriously distort the relative magnitudes 
of treatment effects, of block effects, etc. 

The "transformed-back" subgroup means X\x), X'^,, . . 1, will, of course, not have the same 
meaning as the "straight-forward" subgroup means Xa), Xi2), .... Thus, in the case of the 
logarithmic transformation y = log X, if the subgroup means Y(1), Y(2), ... on the transformed 
scale (Y) are arithmetic means of the corresponding Y values, then the "transformed-back" sub- 
group means X'm = anti-log Y(n, X'{2) = anti-log Yi2), . . . , are estimates, not of the corre- 
sponding population arithmetic means p(U, n(i), . . . , but rather of the corresponding population 
geometric means 7m, 712», ■ • • . On the other hand, if instead of considering subgroup means, we 
were to consider subgroup medians X(1), X(2,, . . . , then the corresponding subgroup medians 
?(D , YY>), . . . , on the Y-scale will always be in the same relative rank order as the original sub- 
group medians on the X-scale; and the "transformed-back" subgroup medians X'm = g (?(1J), 
X\2) = g (Y(2)), . . . , will be identically equal to the original subgroup medians X{1), Xm, .... 
Consequently, if there is some danger of distortion through the use of a transformation to achieve 
normality, constancy of variance, linearity, or additivity, then consideration should be given to: 

(a) whether, for the technical purposes at issue, discussion might not be equally or perhaps even 
more conveniently conducted in terms of the transformed values Y, thus obviating the necessity 
of transforming back to the original X-scale; or, 

(b) whether, for purposes of discussion, population medians rather than population means 
might well be equally or perhaps more meaningful. 

In this connection, it must be pointed out that confidence limits for means, differences between 
means (medians, differences between medians) etc., evaluated in terms of the transformed values Y 
can be "transformed back" directly into confidence limits for the corresponding magnitudes* on 
the original X-scale. On the other hand, estimated standard errors of means (medians), differences 
between means (differences between medians), etc., evaluated on the transformed scale Y cannot 
be "transformed-back" directly into standard errors of the corresponding "transformed-back" 
magnitudes on the original scale X. Hence, if standard errors of final results are to be given as a 
way of indicating their respective imprecisions, such standard errors must be evaluated for, and 
stated as being applicable only to, final results expressed on the transformed scale Y. 

As so eloquently remarked by Acton07 "" 221-222). 

"These three reasons for transforming . . . [i.e., to achieve normality, constancy of variance, or additivity] have no 
obvious mathematical compulsion to be compatible; a transformation to introduce additivity might well throw out 
normality and mess up the constancy of variance beyond all recognition. Usually, the pleasant cloak of obscurity 
hides knowledge of all but one property from us — and so we cheerfully transform to vouchsafe unto ourselves this 
one desirable property while carefully refraining from other considerations about which query is futile. But there 
is a brighter side to this picture. The gods who favor statisticians have frequently ordained lhat the world be well 
behaved, and so we often find that a transformation to obtain one of these desiderata in fact achieves them all (well, 
almost achieves them!)." 

Nevertheless, the following sobering advice from Tippett0* "" »«-»«» should not go unheeded: — 

"If a transformed variate [y], having convenient statistical properties, can be substituted for x in the technical argu- 
ments from the results and in their applications, there is everything to be said for making the transformation. But 
otherwise the situation can become obscure. Suppose, for example, that there is an interaction between treatments 
and looms when the measure is warp breakage rate and that the interaction disappears for the logarithm of the warp 
breakage rate. It requires some clear thinking to decide what this signifies technically; and the situation becomes 
somewhat obscure when, as so often happens, the effects are not overwhelmingly significant, and it is remembered that 
a verdict 'no significant interaction' is not equivalent to 'no interaction.' If the technical interpretation has to be in 
terms of the untransformed variate x, and after the statistical analysis has been performed on [y], means and so on 
have to be converted back to x, statistical difficulties arise and the waters deepen. Readers are advised not to make 
transformations on statistical grounds alone unless they are good swimmers and have experience of the currents." 

* E.g., for geometric means on the X-scale, if the transformation involved is Y — log X and arithmetic means are 
employed on the K-scale. 
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CHAPTER 21 

THE RELATION BETWEEN CONFIDENCE INTERVALS 

AND TESTS OF SIGNIFICANCE* 

21-1    INTRODUCTION 

Several chapters in this Handbook are con- 
cerned with statistical tests of significance — 
see, for example,AMCP 706-110,Chapters 3 and 
4. In Paragraph 3-2.1.1, the problem is that 
of deciding whether the average of a new 
product differs from the known or specified 
average m0 of the standard product. The test 
procedure involves computing a quantity u and 
comparing u with the difference between the ob- 
served average X and the standard average m0. 
This comparison is the test of significance. A 
further step in the procedure, however, notes 
that the interval X ± u is in fact a confidence 
interval estimate of the true mean of the new 
product. 

InAMCP 706-111, Chapter 8, the problem of 
comparing an observed proportion with a stand- 
ard proportion is done directly in terms of the 
confidence interval for the observed proportion, 
completely omitting the test-of-significance step 
given in Chapter 3 for comparisons involving 
quantitative data. Tables and charts that give 
confidence intervals for an observed proportion 
are used, and we "test" whether the observed 
proportion differs from the standard by noting 
whether or not the standard proportion is in- 
cluded in the appropriate interval. 

Many statistical consultants, when analyzing 
an experiment for the purpose of testing a 
statistical hypothesis, e.g., when comparing 
means of normal populations, find that they 
prefer to present results in terms of the appro- 
priate confidence interval. 

It must be noted of course that not every 
statistical test can be put in the form of a con- 
fidence interval. In general, tests that are 
direct tests of the value of a parameter of the 
parent population can be expressed in terms of 
confidence intervals. 

When the results of a statistical test can 
alternatively be stated in terms of a confidence 
interval for a parameter, why would we prefer 
the confidence interval statement? Some au- 
thorities have stressed the point that experi- 
menters are not typically engaged in disproving 
things, but are looking for evidence for affirma- 
tive conclusions; after rejecting the null hypoth- 
esis, the experimenter will look for a reasonable 
hypothesis to accept. The relation between 
confidence intervals and tests of significance is 
mentioned only briefly in most textbooks, and 
ordinarily no insight is given as to which con- 
clusion might be more appropriate. (A notable 
exception is Wallis and Roberts0'.) 

* Adapted with permission from  The American Statistician, Vol. 14, No. 1, 1960, from  article entitled 
Intervals and Tests of Significance — A Teaching Aid" by Mary G. Natrella. 

'The Relation Between Confidence 
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21-2    A PROBLEM IN COMPARING AVERAGES 

In this Chapter, we review both procedures 
with reference to a numerical example, which 
was given in Paragraph 3-2.1.1. 

For a certain type of shell, specifications state 
that the amount of powder should average 0.735 
lb. In order to determine whether the average 
for the present stock meets the specification, 
twenty shells are taken at random and the 
weight of powder is determined. The sample 
average X is 0.710 lb. The estimated standard 
deviation s is 0.0504 lb. The question to be 
answered is whether or not the average of 
present stock differs from the specification 
value. In order to use a two-sided test of sig- 
nificance at the (1 — a) probability level, we 
compute a critical value, to be called u.    Let 

t*s 
u = —.-- 

V n 

where t* is the positive number exceeded by 

100 \%) cc of the ^-distribution with n — 1 

degrees of freedom.    (See Table A-4.) 

In the above example with a = .05, t* 
equals 2.09 and u equals 0.0236 lb. The test of 
significance says that if | X — 0.7351 > u, we 
decide that the average for present stock differs 

from the specified average.    Since 

0.710 - 0.735   > 0.0236, 

we decide that there is a difference. 

From the same data, we also can compute a 
95rc confidence interval for the average of 
present stock. This confidence interval is 
X ± u = 0.710 ± 0.0236, or the interval from 
0.686 to 0.734 lb. The confidence interval can 
be used for a test of significance; since it does 
NOT include the standard value 0.735, we con- 
clude that the average for the present stock 
DOES differ from the standard. 

Comparisons of two materials (see Paragraph 
3-3.1.1 for the case of both means unknown and 
equal variances) may be made similarly. In 
computing a test of significance, we compare the 
difference between sample means, | XA — XH \, 
with a computed critical quantity, again called 
u. If | X.\ — XD I is larger than u, we declare 
that the means differ significantly at the chosen 
level.    We also note that the interval 

(X, - X») ± u 

is a confidence interval for the difference be- 
tween the true means (mA — m«) ; if the com- 
puted interval does not include zero, we conclude 
from the experiment that the two materials 
differ in mean value. 

21-3    TWO WAYS  OF PRESENTING THE  RESULTS 

Here then are two ways to answer the original 
question. We may present the result of a test 
of significance, or we may present a confidence 
interval. The significance test is a go no-go 
decision. We compute a critical value u, and 
we compare it with an observed difference. If 
the observed difference exceeds u, we announce 
a significant difference; if it does not, we 
announce that there is NO difference. If we 
had no OC curve for the test, our decision 
would be a yes-no proposition with no shadow- 
land of indifference. The significance test may 
have said NO, but only the OC curve can 
qualify this by showing that this particular 
experiment had only a ghost of a chance of 

saying YES to this particular question. For 
example, see Figure 21-1.    If the true value of 

d =  !  j were equal to 0.5, a sample of 10 

is not likely to detect a difference, but a sample 
of 100 is almost certain to detect such a 
difference. 

Using a rejection criterion alone is not the 
proper way to think of a significance test; we 
should always think of the associated OC curve 
as part and parcel of the test. Unfortunately, 
this has not always been the case. As a matter 
of fact, many experimenters who use signifi- 
cance tests are using them as though there were 
no such thing as an OC curve. 
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Figure 21-1.    Reprint of Figure 3-1.    0C curves for the two-sided t-test (a = .05). 

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1948, pp. 178-197, from article entitled "Operating Charac- 
teristics for the Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver. 
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21-4    ADVANTAGES OF THE CONFIDENCE-INTERVAL APPROACH 

A confidence-interval procedure contains in- 
formation similar to the appropriate OC curve, 
and, at the same time, is intuitively more ap- 
pealing than the combination of a test of sig- 
nificance and its OC curve. If the standard 
value is contained in the confidence interval, we 
can announce NO difference. The width of the 
confidence interval gives a good idea of how firm 
is the Yes or No answer; however, there is a 
caution in this regard which is explained in the 
following paragraphs. 

Suppose that the standard value for some 
property is known to be 0.735, and that a 
100 (1 — a) % confidence interval for the same 
property of a possibly different material is de- 
termined to be the interval from 0.600 to 0.800. 
It is true that the standard value does lie within 
this interval, and that we would declare no 
difference. All that we really know about the 
new product, however, is that its mean probably 
is between 0.6 and 0.8. If a much more exten- 
sive experiment gave a 100 (1 — a) % confi- 
dence interval of 0.60 to 0.70 for the new mean, 
our previous decision of no difference would be 
reversed. 

On the other hand, if the computed confi- 
dence interval for the same confidence coeffi- 
cient had been 0.710 to 0.750, our answer would 
still have been no difference, but we would have 
said NO more loudly and firmly. The confi- 
dence interval not only gives a Yes or No 
answer, but, by its width, also gives an indica- 
tion of whether the answer should be whispered 
or shouted. 

multiple of s, the estimate of a from the sample), 
we occasionally can be misled by unusually 
short or long intervals. But the average width 
of the entire family of intervals associated with 
a given confidence-interval procedure is a defi- 
nite function of the appropriate dispersion 
parameter, so that on the average the random 
widths do give similar information. For a 
graphical illustration of confidence intervals 
computed from 100 random samples of n = 4 
(actually random normal deviates), see Figure 
21-2. Despite the fluctuation in size and posi- 
tion of the individual intervals, a proportion of 
intervals which is remarkably close to the speci- 
fied proportion do include the known popula- 
tion average. If a were known rather than esti- 
mated from the individual sample, the intervals 
would fluctuate in position only, of course. 

The significance test gives the same answer, 
and a study of the OC curve of the test indicates 
how firm is the answer. If the test is dependent 
on the value of a , the OC curve has to be given 
in terms of the unknown a. In such a situa- 
tion, we must use an upper bound for a in order 
to interpret the OC curve, and again we may be 
misled by a poor choice of this upper bound. 
On the other hand, the width of the confidence 
interval is part and parcel of the information 
provided by that method. No a priori esti- 
mates need be made of a as would be necessary 
to interpret the OC curve. Furthermore, a 
great advantage of confidence intervals is that 
the width of the interval is in the same units as 
the parameter itself. The experimenter finds 
this information easy to grasp, and easy to com- 
pare with other information he may have. 

This is certainly true when the width of the 
interval for a given confidence coefficient is a 
function only of n and the appropriate disper- 
sion parameter (e.g., known a). When the 
width itself is a random variable (e.g., is a fixed 

The most striking illustration of information 
provided by confidence intervals is shown in the 
charts of confidence limits for a binomial param- 
eter. In this case, the limits depend only on n 
and the parameter itself, and we cannot be mis- 
led in an individual sample. 
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Suppose that a new item is being tested for 
comparison with a standard. We observe two 
defectives in a sample of 10, and we estimate the 
proportion defective for the new item as 0.20. 
The 95% confidence interval given in Table 
A-22, corresponding to an observed proportion 
of 0.20 (n = 10), is 0.04 to 0.60. Assume that 
the known proportion defective for the standard 
P0 is 0.10. Our experiment with a sample of 10 
gives a confidence interval which includes P„; 
and, therefore, we announce no difference be- 

tween the new item and the standard in this 
regard. Intuitively, however, we feel that the 
interval 0.04 to 0.60 is so wide that our experi- 
ment was not very indicative. Suppose that 
we test 100 new items and observe 20 defectives. 
The observed proportion defective again is 0.20. 
The confidence interval from Table A-24 is 
0.13 to 0.29, and does not include P0 = 0.10. 
This time, we are forced to announce that the 
new item is different from the standard; and the 
narrower width of the confidence interval (0.13 
to 0.29) gives us some confidence in doing so. 
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Figure 21-2.    Reprint of Figure 1-8.    Computed confidence intervals for 100 samples of size U 
drawn at random from a normal population with m = 50,000 psi, a- = 5,000 psi. 
Case A shows 50% confidence intervals; Case B shows 90% confidence intervals. 

Adapted with permission from ASTM Manna] of Quality Control of Materiah. Copyright, 1951, American Society for Testing Materials. 
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21-5    DEDUCTIONS FROM THE OPERATING CHARACTERISTIC (OC) CURVE 

The foregoing paragraphs have shown that it 
is possible to have some notion of the discrimin- 
atory power of the test from the size of confi- 
dence intervals. Is it also possible, in reverse, 
to deduce from the OC curve what kind of con- 
fidence interval we would get for the new mean? 
Although we cannot deduce the exact width of 
the confidence interval, we can infer the order of 
magnitude. Suppose that: we have measured 
100 items; we have performed a two-sided i-test 
(does the average m differ from TO.,,?); and we 
have obtained a significant result. Look at the 
curve for n = 100 in Figure 21-1, which plots 
the probability of accepting Hu (the null hy- 

m — m„' 
pothesis)   against  d = From   the 

curve, we see that when d is larger than 0.4, the 
probability of accepting the null hypothesis is 
practically zero. Since our significance test did 
reject the null hypothesis, we may reasonably 

assume' that our d 
TO — TO,,I 

is larger than 

0.4 , and may perhaps infer a bound for the true 
value of \m — m„j — in other words, some 
"confidence interval" for m. 

On the other hand, suppose that only 10 
items were tested and a significant result was 
obtained. If we look at the curve for n = 10, 
we see that the value of d which is practically 
certain to be picked up on a significance test is 
d = 1.5 or larger. As expected, a significant 
result from an experiment which tested only 10 
items corresponds to a wider confidence inter- 
val for TO than the interval inferred from the 
test of 100 items. A rough comparison of the 
relative widths may be made. More quantita- 
tive comparisons could be made, but the pur- 
pose here is to show a broad general relation- 
ship. 

21-6    RELATION TO THE PROBLEM OF DETERMINING SAMPLE SIZE 

The problem of finding the sample size re- 
quired to detect differences between means can 
be approached in two ways also. We can 
specify tolerable risks of making either kind of 
irrong decision (errors of the first or the second 
kind) — thereby fixing two points on the OC 
curve of the pertinent test. Matching these 
two points with computed curves for various n, 

enables us to pick the proper sample size for the 
experiment. 

Alternatively, we can specify the magnitude 
of difference between means which is of impor- 
tance. We then compute the sample size re- 
quired to give a confidence interval of fixed 
length equal to the specified difference. 

21-7    CONCLUSION 

Presentation of results in terms of confidence 
intervals can be more meaningful than is the 
presentation of the usual tests of significance (if 
the test result is not considered in connection 
with its OC curve). Things are rarely black or 
white; decisions are rarely made on one-shot 

information. Confidence intervals give a feel- 
ing of the uncertainty of experimental evidence, 
and (very important) give it in the same units, 
metric or otherwise, as the original observa- 
tions. A recent development in statistical 
theory that stems from the intuitive preference 

tests, but usually in conjunction with other      for confidence intervals is given in Birnbaum' 
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CHAPTER 22 

NOTES ON STATISTICAL COMPUTATIONS 

22-1     CODING IN STATISTICAL COMPUTATIONS 

Coding is the term used when arithmetical 
operations are applied to the original data in 
order to make the numbers easier to handle in 
computation. The possible coding operations 
are: 

(a) Multiplication (or its inverse, division) to 
change the order of magnitude of the recorded 
numbers for computing purposes. 

(b) Addition (or its inverse, subtraction) of a 
constant — applied to recorded numbers which 
are nearly equal, to reduce the number of figures 
which need be carried in computation. 

When the recorded results contain non-signifi- 
cant zeros, (e.g., numbers like .000121 or like 
11,100), coding is clearly desirable. There ob- 
viously is no point in copying chese zeros a large 
number of times, or in adding additional useless 
zeros when squaring, etc. Of course, these re- 
sults could have been given as 121 X 10 4 or 
11.1 X 103, in which case coding for order of 
magnitude would not be necessary. 

The purpose of coding is to save labor in 
computation. On the other hand, the process 
of coding and decoding the results introduces 
more opportunities for error in computation. 
The decision of whether to code or not must be 
considered carefully, weighing the advantage of 
saved labor against the disadvantage of more 
likely mistakes. With this in mind, the follow- 
ing five rules are given for coding and decoding. 

1. The whole set of observed results must be 
treated alike. 

2. The possible coding operations are the two 
general types of arithmetic operations: 

(a) addition (or subtraction); and, 
(b) multiplication (or division). Either 

fa) or (b), or both together, may be used as 
necessary to make the original numbers more 
tractable. 

3. Careful note must be kept of how the data 
have been coded. 

4. The desired computation is performed on 
the coded data. 

5. The process of decoding a computed re- 
sult depends on the computation that has been 
performed, and is indicated separately for 
several common computations, in the following 
Paragraphs (a) through (d). 

(a) The mean is affected by every coding 
operation. Therefore, we must apply the in- 
verse operation and reverse the order of opera- 
tions used in coding, to put the coded mean 
back into original units. For example, if the 
data have been coded by first multiplying by 
10,000 and then subtracting 120, decode the 
mean by adding 120 and then dividing by 
10,000. 

Observed 
Results 

Coded 
Results 

.0121 

.0130 

.0125 

1 
10 

5 

Mean    .0125 

Decoding:    Mean 

Coded mean      5 

Coded mean + 120 
10,000 

125 
" 10,000 
= .0125 

(b) A standard deviation computed on 
coded data is affected by multiplication or divi- 
sion only. The standard deviation is a measure 
of dispersion, like the range, and is not affected 
by adding or subtracting a constant to the 
whole set of data.    Therefore, if the data have 
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been coded by addition or subtraction only, no 
adjustment is needed in the computed standard 
deviation. If the coding has involved multi- 
plication (or division), the inverse operation 
must be applied to the computed standard 
deviation to bring it back to original units. 

(c) A variance computed on coded data 
must be: multiplied by the square of the coding 
factor, if division has been used in coding; or 
divided by the square of the coding factor, if 
multiplication was used in coding. 

(d) Coding which involves loss of significant 
figures: The kind of coding thus far discussed 
has involved no loss in significant figures. 
There is another method of handling data, how- 
ever, that involves both coding and rounding, 
and is also called "coding". This operation is 
sometimes used when the original data are con- 
sidered to be too finely-recorded for the purpose. 

For example, suppose that the data consist of 
weights (in pounds) of shipments of some bulk 
material. If average weight is the character- 
istic of interest, and if the range of the data is 
large, we might decide to work with weights 
coded to the nearest hundred pounds, as follows: 

Observed Weights Coded Data 
Units: lbs. Units: 100 lbs. 

7,123 71 
10,056 101 

100,310 1003 
5,097 51 

543 5 

etc. etc. 

Whether or not the resulting average of the 
coded data gives us sufficient information will 
depend on the range of the data and the in- 
tended use of the result. It should be noted 
that this "coding" requires a higher order of 
judgment than the strictly arithmetical coding 
discussed in previous examples, because some 
loss of information does occur. The decision to 
"code" in this way should be made by someone 
who understands the source of the data and the 
intended use of the computations. The group- 
ing of data in a frequency distribution is coding 
of this kind. 

22-2    ROUNDING IN STATISTICAL COMPUTATIONS 

22-2.1     ROUNDING OF NUMBERS 

Rounded numbers are inherent in the process 
of reading and recording data. The readings of 
an experimenter are rounded numbers to start 
with, because all measuring equipment is of 
limited accuracy. Often he records results to 
even less accuracy than is attainable with the 
available equipment, simply because such re- 
sults are completely adequate for his immediate 
purpose. Computers often are required to 
round numbers — either to simplify the arith- 
metic calculations, or because it cannot be 
avoided, as when 3.1416 is used for T or 1.414 is 
used for \/2. 

When a number is to be rounded to a specific 
number   of   significant   figures,   the   rounding 

procedure should be carried out in accordance 
with the following three rules. 

1. When the figure next beyond the last place 
to be retained is less than 5, the figure in the last 
place retained should be kept unchanged. 

For example, .044 is rounded to .04. 
2. When the figure next beyond the last fig- 

ure or place to be retained is greater than 5, the 
figure in the last place retained should be in- 
creased by 1. 

For example, .046 is rounded to .05. 
3. When the figure next beyond the last fig- 

ure to be retained is 5, and, 
(a) there are no figures or are only zeros 

beyond this 5, an odd figure in the last place to 
be retained should be increased by 1, an even 
figure should be kept unchanged. 
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For example, .045 or .0450 is rounded to 
.04; .055 or .0550 is rounded to .06. 

(b) if the 5 is followed by any figures other 
than zero, the figure in the last place to be 
retained should be increased by 1, whether odd 
or even. 

For example, in rounding to two deci- 
mals, .0451 is rounded to .05. 

A number should always be rounded off in one 
step to the number of figures that are to be 
recorded, and should not be rounded in two or 
more steps of successive roundings. 

22-2.2    ROUNDING   THE   RESULTS   OF   SINGLE 
ARITHMETIC OPERATIONS 

Nearly all numerical calculations arising in 
the problems of everyday life are in some way 
approximate. The aim of the computer should 
be to obtain results consistent with the data, 
with a minimum of labor. We can be guided in 
the various arithmetical operations by some 
basic rules regarding significant figures and the 
rounding of data: 

1.  Addition. When several approximate num- 
bers are to be added, the sum should be rounded 
to the number of decimal places (not significant 
figures) no greater than in the addend which 
has the smallest number of decimal places. 

Although the result is determined by 
the least accurate of the numbers en- 
tering the operation, one more decimal 
place in the more-accurate numbers 
should be retained, thus eliminating 
inherent errors in the numbers. 

For example: 

4.01 
.002 
.623 

4.635 

The sum should be rounded to and recorded 
as 4.64. 

2.   Subtraction. When one approximate num- 
ber is to be subtracted from another, they must 

both be rounded off to the same place before 
subtracting. 

Errors arising from the subtraction of 
nearly-equal approximate numbers are 
frequent and troublesome, often mak- 
ing the computation practically worth- 
less. Such errors can be avoided when 
the two nearly-equal numbers can be 
approximated to more significant 
digits. 

3. Multiplication. If the less-accurate of two 
approximate numbers contains n significant 
digits, their product can be relied upon for n 
digits at most, and should not be written with 
more. 

As a practical working plan, carry in- 
termediate computations out in full, 
and round off the final result in ac- 
cordance with this rule. 

4. Division. If the less-accurate of either the 
dividend or the divisor contains n significant 
digits, their quotient can be relied upon for n 
digits at most, and should not be written with 
more. 

Carry intermediate computations out 
in full, and round off the final result in 
accordance with this rule. 

5. Powers and Roots. If an approximate num- 
ber contains n significant digits, its power can be 
relied upon for n digits at most; its root can be 
relied upon for at least n digits. 

6. Logarithms. If the mantissa of the loga- 
rithm in an rc-place log table is not in error by 
more than two units in the last significant 
figure, the antilog is correct ton — 1 significant 
figures. 

The foregoing statements are working rules 
only. More complete explanations of the 
rules, together with procedures for determining 
explicit bounds to the accuracy of particular 
computations, are given in Scar borough(n, and 
the effects of rounding on statistical analyses of 
large numbers of observations are discussed in 
Eisenhart<2). 
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22-2.3    ROUNDING THE RESULTS OF A SERIES 
OF ARITHMETIC OPERATIONS 

Most engineers and physical scientists are 
well acquainted with the rules for reporting a 
result to the proper number of significant fig- 
ures. From a computational point of view, 
they know these rules too well. It is perfectly 
true, for example, that a product of two num- 
bers should be reported to the same number of 
significant figures as the least-accurate of the 
two numbers. It is not so true that the two 
numbers should be rounded to the same num- 
ber of significant figures before multiplication. 
A better rule is to round the more-accurate 
number to one more figure than the less-accu- 
rate number, and then to round the product to 
the same number of figures as the less-accurate 
one. The great emphasis against reporting 
more figures than are reliable has led to a 
prejudice against carrying enough figures in 
computation. 

Assuming that the reader is familiar with the 
rules of the preceding Paragraph 22-2.2, regard- 
ing significant figures in a single arithmetical 
operation, the following paragraphs will stress 
the less well-known difficulties which arise in a 
computation consisting of a long series of dif- 
ferent arithmetic operations. In such a com- 
putation, strict adherence to the rules at each 
stage can wipe out all meaning from the final 
results. 

For example, in computing the slope of a 
straight line fitted to observations containing 
three significant figures, we would not report 
the slope to seven significant figures; but, if we 
round to three significant figures after each 
necessary step in the computation, we might 
end up with no significant figures in the value 
of the slope. 

It is easily demonstrated by carrying out a 
few computations of this nature that there is 
real danger of losing all significance by too- 

strict adherence to rules devised for use at the 
final stage. The greatest trouble of this kind 
comes where we must subtract two nearly- 
equal numbers, and many statistical computa- 
tions involve such subtractions. 

The rules generally given for rounding-off, 
were given in a period when the average was the 
only property of interest in a set of data. 
Reasonable rounding does little damage to the 
average. Now, however, we almost always cal- 
culate the standard deviation, and this statistic 
does suffer from too-strict rounding. Suppose 
we have a set of numbers: 

3.1 
3.2 
3.3 

Avg. = 3.2 

If the three numbers are rounded off to one sig- 
nificant figure, they are all identical. The 
average of the rounded figures is the same as the 
rounded average of the original figures, but all 
information about the variation in the original 
numbers is lost by such rounding. 

The generally recommended procedure is to 
carry two or three extra figures throughout the 
computation, and then to round off the final 
reported answer (e.g., standard deviation, slope 
of a line, etc.) to a number of significant figures 
consistent with the original data. However, in 
some special computations such as the fitting of 
equations by least squares methods given in 
AMCP 706-110, Chapters 5 and 6, one should' 
carry extra decimals in the intermediate steps 
— decimals sufficiently in excess of the number 
considered significant to insure that the com- 
putational errors in the final solutions are 
negligible in relation to their statistical impreci- 
sion as measured by their standard errors. For 
example, on a hand-operated computing ma- 
chine, use its total capacity and trim the figures 
off as required in the final results. (See 
Chapter 23.) 
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CHAPTER 23 

EXPRESSION OF THE UNCERTAINTIES OF FINAL RESULTS 

23-1     INTRODUCTION 

Measurement of some property of a thing in 
practice always takes the form of a sequence of 
steps or operations that yield as an end result a 
number that serves to represent the amount or 
quantity of some particular property of a 
thing — a number that indicates how much of 
this property the thing has, for someone to use 
for a specific purpose. The end result may be 
the outcome of a single reading of an instru- 
ment, with or without corrections for departures 
from prescribed conditions. More often, it is 
some kind of average; e.g., the arithmetic mean 
of a number of independent determinations of 
the same magnitude, or the final result of a least 
squares "reduction" of measurements of a num- 
ber of different magnitudes that bear- known 
relations with each other in accordance with a 
definite experimental plan. In general, the 
purpose for which the answer is needed deter- 
mines the precision or accuracy of measurement 
required, and ordinarily also determines the 
method of measurement employed. 

Although the accuracy required of a reported 
value depends primarily on the use, or uses, for 
which it is intended, we should not ignore the 
requirements of other uses to which the re- 
ported value is likely to be put. A certified or 
reported value whose accuracy is entirely un- 
known is worthless. 

Strictly speaking, the actual error of a re- 
ported value, that is, the magnitude and sign of 
its deviation from the truth, is usually un- 
knowable. Limits to this error, however, can 
usually be inferred — with some risk of being 
incorrect — from the precision of the measure- 
ment process by which the reported value was 
obtained, and from reasonable limits to the pos- 
sible bias of the measurement process. The 
bias, or systematic error, of a measurement proc- 

ess is the magnitude and direction of its tend- 
ency to measure something other than what was 
intended; its precision refers to the typical 
closeness together of successive independent 
measurements of a single magnitude generated 
by repeated applications of the process under 
specified conditions; and, its accuracy is deter- 
mined by the closeness to the true value charac- 
teristic of such measurements. • 

Precision and accuracy are inherent charac- 
teristics of the measurement process employed, 
and not of the particular end result obtained. 
From experience with a particular measurement 
process and knowledge of its sensitivity to un- 
controlled factors, we can often place reasonable 
bounds on its likely systematic error (bias). It 
also is necessary to know how well the particular 
value in hand is likely to agree with other values 
that the same measurement process might have 
provided in this instance, or might yield on re- 
measurement of the same magnitude on another 
occasion. Such information is provided by the 
standard error of the reported value, which 
measures the characteristic disagreement of re- 
peated determinations of the same quantity by 
the same method, and thus serves to indicate 
the precision (strictly, the imprecision) of the 
reported value. 

The uncertainty of a reported value is indi- 
cated by giving credible limits to its likely inac- 
curacy. No single form of expression for these 
limits is universally satisfactory. In fact, dif- 
ferent forms of expression are recommended, the 
choice of which will depend on the relative 
magnitudes of the imprecision and likely bias; 
and on their relative importance in relation to 
the intended use of the reported value, as well as 
to other possible uses to which it may be put. 
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Four distinct cases need to be recognized: 

1. Both systematic error and imprecision 
negligible in relation to the requirements of the 
intended and likely uses of the result. 

2. Systematic error not negligible, but im- 
precision negligible, in relation to the require- 
ments. 

3. Neither systematic error nor imprecision 
negligible in relation to the requirements. 

4. Systematic error negligible, but impreci- 
sion not negligible in relation to the require- 
ments. 

Specific recommendations are made below 
with respect to each of these four cases, sup- 
plemented by further discussion of each case in 
Paragraphs 23-2 through 23-5. These recom- 
mendations may be summarized as follows: 

(a) Two numerics, respectively expressing 
the imprecision and bounds to the systematic 
error of the result, should be used whenever: 
(1) the margin is narrow between ability to 
measure and the accuracy or precision require- 

ments of the situation; or, (2) the imprecision 
and the bounds to the systematic error are 
nearly equal in indicating possible differences 
from the true value. Such instances come under 
Case 3. 

(b) A quasi-absolute type of statement with 
one numeric, placing bounds on the inaccuracy 
of the result, should be used whenever: (1) a 
wide or adequate margin exists between ability 
to measure and the accuracy requirements of 
the situation (Case 1); (2) the imprecision is 
negligibly small in comparison with the bounds 
placed on the systematic error (Case 2); or, 
(3) the control is so satisfactory that the extent 
of error is known. 

(c) A single numeric expressing the impreci- 
sion of the result should be used whenever the 
systematic error is either zero by definition or 
negligibly small in comparison with the impreci- 
sion (Case 4). 

(d) Expressions of uncertainty should be 
given in sentence form whenever feasible. 

(e) The form "a ± b" should be avoided as 
much as possible; and never used without ex- 
plicit explanation of its connotation. 

23-2    SYSTEMATIC ERROR  AND IMPRECISION BOTH NEGLIGIBLE 
(CASE  1) 

In this case, the certified or reported result 
should be given correct to the number of sig- 
nificant figures consistent with the accuracy 
requirements of the situation, together with an 
explicit statement of its accuracy or correctness. 

For example: 
. . . the wavelengths of the principal visible 
lines of mercury 198 have been measured 
relative to the 6057.802106 A (Angstrom 
units) line of krypton 98, and their values 
in vacuum are certified to be 

5792.2685 A 
5771.1984 A 

5462.2706 A 
4359.5625 A 
4047.7146 A 

correct to eight significant figures. 

It must be emphasized that when no state- 
ment of accuracy or precision accompanies a 
certified or reported number, then, in accord- 
ance with the usual conventions governing 
rounding, this number will be interpreted as 
being accurate within ±£ unit in the last sig- 
nificant figure given; i.e., it will be understood 
that its inaccuracy before rounding was less 
than ±5 units in the next place. 
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23-3    SYSTEMATIC ERROR NOT NEGLIGIBLE, IMPRECISION NEGLIGIBLE 
(CASE 2) 

In such cases: 

(a) Qualification of a certified or reported 
result should be limited to a single quasi- 
absolute type of statement that places bounds 
on its inaccuracy; 

(b) These bounds should be stated to no 
more than two significant figures; 

(c) The certified or reported result itself 
should be given (i.e., rounded) to the last place 
affected by the stated bounds, unless it is de- 
sired to indicate and preserve such relative 
accuracy or precision of a higher order that the 
result may possess for certain particular uses; 

(d) Accuracy statements should be given 
in sentence form in all cases, except when a 
number of results of different accuracies are pre- 
sented, e.g., in tabular arrangement. If it is 
necessary or desirable to indicate the respective 
accuracies of a number of results, the results 

should be given in the form o ± b (or a _    , if 

necessary) with an appropriate explanatory 
remark (as a footnote to the table, or incor- 
porated in the accompanying text) to the effect 

that the ± b, or  _    , signify bounds to the 

errors to which the a's may be subject. 

The particular form of the quasi-absolute 
type of statement employed in a given instance 
ordinarily will depend upon personal taste, 
experience, current and past practice in the 
field of activity concerned, and so forth. Some 
examples of good practice are: 

... is (are) not in error by more than 1 part 
in ( x ). 
... is (are) accurate within ± (x units) (or 
±(*)%). 
...   is  (are)   believed   accurate  within 
( )• 

Positive wording, as in the first two of these 
quasi-absolute statements, is appropriate only 
when the stated bounds to the possible inac- 
curacy of the certified or reported value are 

themselves reliably established. On the other 
hand, when the indicated bounds are somewhat 
conjectural, it is desirable to signify this fact 
(and thus put the reader on guard) by inclusion 
of some modifying expression such as "be- 
lieved", "considered", "estimated to be", 
"thought to be", and so forth, as exemplified by 
the third of the foregoing examples. 

Results should never be presented in the form 
"a ± b", without explanation. If no explana- 
tion is given, many persons will automatically 
take ±& to signify bounds to the inaccuracy of 
a. Others may. assume that b is the standard 
error or the probable error of a, and hence that 
the uncertainty of a is at least ±3&, or ±46, 
respectively. Still others may take b to be an 
indication merely of the imprecision of the in- 
dividual measurements; that is, to be the 
standard deviation, the average deviation, or the 
probable error of a SINGLE observation. Each 
of these interpretations reflects a practice of 
which instances can be found in current scien- 
tific literature. As a step in the direction of 
reducing this current confusion, we urge that 
the use of "a ± b" in presenting results in 
official documents be limited to that sanctioned 
under (d) above. 

The term uncertainty, with the quantitative 
connotation of limits to the likely departure 
from the truth, and not simply connoting vague 
lack of certainty, may sometimes be used effec- 
tively to achieve a conciseness of expression 
otherwise difficult or impossible to attain. 
Thus, we might make a statement such as: 

The uncertainties in the above values are 
not more than ±0.5 degree in the range 
0° to  1100°C, and then increase to   ±2 
degrees at 1450°C.; 

or, 
The uncertainty in this value does not ex- 
ceed  excluding (or, including) the 
uncertainty of in the value  
adopted   for   the   reference   standard   in- 
volved. 
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Finally, the following forms of quasi-absolute 
statements are considered poor practice, and 
should be avoided: 

The accuracy of is 5 percent. 
The accuracy of is ±2 percent. 

These statements are presumably intended to 
mean that the result concerned is not inaccu- 
rate, i.e., not in error, by more than 5 percent 
or 2 percent, respectively; but they explicitly 
state the opposite. 

23-4    NEITHER SYSTEMATIC  ERROR NOR IMPRECISION NEGLIGIBLE 
(CASE 3) 

In such cases: 

(a) A certified or reported result should be 
qualified by: (1) a quasi-absolute type of state- 
ment that places bounds on its systematic 
error; and, (2) a separate statement of its 
standard error or its probable error, explicitly 
identified, as a measure of its imprecision; 

(b) The bounds to its systematic error and 
the measure of its imprecision should be stated 
to no more than two significant figures; 

(c) The certified or reported result itself 
should be stated, at most, to the last place 
affected by the finer of the two qualifying state- 
ments, unless it is desired to indicate and pre- 
serve such relative accuracy or precision of a 
higher order that the result may possess for 
certain particular uses; 

(d) The qualification of a certified or re- 
ported result, with respect to its imprecision and 
systematic error, should be given in sentence 
form, except when results of different precision 
or with different bounds to their systematic 
errors are presented in tabular arrangement. 
If it is necessary or desirable to indicate their 
respective imprecisions or bounds to their re- 
spective systematic errors, such information 
may be given in a parallel column or columns, 
with appropriate identification. 

Here, and in Paragraph 23-5, the term stand- 
ard error is to be understood as signifying the 
standard deviation of the reported value itself, 
not as signifying the standard deviation of a 
single determination (unless, of course, the re- 
ported value is the result of a single determina- 
tion only). 

The above recommendations should not be 
construed to exclude the presentation of a 
quasi-absolute type of statement placing bounds 

on the inaccuracy, i.e., on the overall uncer- 
tainty, of a certified or reported value, provided 
that separate statements of its imprecision and 
its possible systematic error are included also. 
Bounds indicating the overall uncertainty of a 
reported value should not be numerically less 
than the corresponding bounds placed on the 
systematic error outwardly increased by at least 
two times the standard error. The fourth of 
the following examples of good practice is an 
instance at point: 

The standard errors of these values do not 
exceed 0.000004 inch, and their systematic 
errors are not in excess of 0.00002 inch. 

The standard errors of these values are less 
than (x units), and their systematic errors 
are thought to be less than ± (y units). 

. . . with a standard error of (x units), and 
a systematic error of not more than 
± (y units). 

. . . with an overall uncertainty of ±3 per- 
cent based on a standard error of 0.5 per- 
cent and an allowance of ±1.5 percent for 
systematic error. 

When a reliably established value for the 
relevant standard error is available, based on 
considerable recent experience with the meas- 
urement process or processes involved, and the 
dispersion of the present measurements is in 
keeping with this experience, then this estab- 
lished value of the standard error should be 
used. When experience indicates that the rele- 
vant standard error is subject to fluctuations 
greater than the intrinsic variation of such a 
measure,   then   an   appropriate   upper   bound 
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should be given, e.g., as in the first two of the 
above examples, or by changing "a standard 
error ..." in the third and fourth examples to 
"an upper bound to the standard error . . .". 

When there is insufficient recent experience 
with the measurement processes involved, an 
estimate of the standard error must of necessity 
be computed, by recognized statistical proce- 
dures, from the same measurements as the certi- 
fied or reported value itself. It is essential that 
such computations be carried out according to 
an agreed-upon standard procedure, and that 
the results thereof be presented in sufficient 
detail to enable the reader to form his own judg- 
ment and make his own allowances for their 
inherent uncertainties. To avoid possible mis- 
understanding in such cases: 

(a) the term computed standard error should 
be used; 

(b) the estimate of the standard error em- 
ployed should be that obtained from the relation 

estimate of standard error 

sum of squared residuals 
nv 

where n is the (effective) number of completely 
independent determinations of which a is the 
arithmetic mean (or, other appropriate least 
squares adjusted value) and v is the number of 
degrees of freedom involved in the sum of 
squared residuals (i.e., the number of residuals 
minus the number of fitted constants and/or 
other independent constraints); and, 

(c)   the  number  of  degrees  of  freedom   v 
should be explicitly stated. 

If the reported  value a is the arithmetic 
mean, then: 

estimate of standard error = 

where s- is computed as shown in AMCT  706-110, 
Chapter 2, Paragraph 2-2.2, and n is the num- 
ber of completely independent determinations 
of which a is the arithmetic mean. 

For example: 
The computed probable error (or, standard 
error) of these values is (x units), based on 
( v ) degrees of freedom, and the system- 
atic error is estimated to be less than 
± (y units). 

. . . which is the arithmetic mean of ( n ) 
independent determinations and has a com- 
puted standard error of  

. . . with an overall uncertainty of ±5.2 
km sec based on a standard error of 1.5 
km sec and bounds of ±0.7 km sec on the 
systematic error. (The figure 5.2 equals 
0.7 plus 3 times 1.5). 

Or, if based on a computed standard erro-: 

. . . with an overall uncertainty of ±7 
km/sec derived from bounds of ±0.7 
km/sec on the systematic error and a com- 
puted standard error of 1.5 km/sec based 
on 9 degrees of freedom. (The figure 7 is 
approximately equal to 0.7 + 4.3 (1.5), 
where 4.3 is the two-tail 0.002 probability 
value of Student's t for 9 degrees of free- 
dom.    As v -> * , t.,m (v) -► 3.090.) 

23-5    SYSTEMATIC ERROR NEGLIGIBLE, IMPRECISION NOT NEGLIGIBLE 
(CASE 4) 

In such cases: 

(a) Qualification of a certified or reported 
value should be limited to a statement of its 
standard error or of an upper bound thereto, 
whenever a reliable determination of such value 
or bound is available.    Otherwise, a computed 

value of the standard error so designated should 
be given, together with a statement of the num- 
ber of degrees of freedom on which it is based; 

(b) The standard error or upper bound 
thereto, should be stated to not more |than two 
significant figures; 

23- 



EXPRESSING UNCERTAINTIES OF RESULTS 

(c) The certified or reported result itself 
should be stated, at most, to the last place 
affected by the stated value or bound to its im- 
precision, unless it is desired to indicate and 
preserve such relative precision of a higher order 
that the result may possess for certain par- 
ticular uses; 

(d) The qualification of a certified or re- 
ported result with respect to its imprecision 
should be given in sentence form, except when 
results of different precision are presented in 
tabular arrangement and it is necessary or de- 
sirable to indicate their respective imprecisions, 
in which event such information may be given 
in a parallel column or columns, with appro- 
priate identification. 

The above recommendations should not be 
construed to exclude the presentation of a quasi- 
absolute type of statement placing bounds on 
its possible inaccuracy, provided that a sepa- 
rate statement of its imprecision is included also. 
Such bounds to its inaccuracy should be nu- 
merically equal to at least two times the stated 
standard error.    The fourth of the following 

examples of good  practice is an instance at 
point: 

The standard errors of these values are less 
than (x units). 
. . . with a standard error of (x units). 

. . . with a computed standard error of 
(a; units) based on ( v ) degrees of freedom. 
. . . with an overall uncertainty of ±4.5 
km/sec derived from a standard error of 
1.5 km sec. (The figure 4.5 equals 3 times 
1.5). 

Or, if based on a computed standard error: 

. . . with an overall uncertainty of ±6.5 
km/sec derived from a computed standard 
error of 1.5 km/sec (based on 9 degrees of 
freedom). (The figure 6.5 equals 4.3 times 
1.5, where 4.3 is the two-tail 0.002 proba- 
bility value of Student's t for 9 degrees of 
freedom.    As v —> * , t.002 (v) —> 3.090. 

The remarks with regard to a computed 
standard error in Paragraph 23-4 apply with 
equal force to the last two of the above examples. 
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stated precision, 2-12 
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Data Samples 
aluminum alloy, tensile strength of, 16-6 
batteries, capacity of, 15-4 
breakdowns of electricity meters, 9-4 
burning time of rocket powder, 2-6 
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cement briquettes, breaking-strength of, 15-6 
chemical cells, temperature reference, 13-33 
defectives in sample of new product, 8-1 
field trials of two types of mine fuzes, 8-16 
flame tests of fire-retardant treatments 

for factorial experiments, 12-4 
assuming fractional factorial design, 12-19 

inspections and tests of clinical thermometers, 9-2 
nickel, spectographic determination of, 13-22 
peak-voltage test of fuzes, 10-2 
performance of new type of mine fuze, 8-2 
resistors, conversion gain of, 13-4 
resistors, noise measurement of, 13-14 
resistors, reverse-bias collector current of 10, 16-2 
shells, penetration depth of, 15-1 
small-scale comparison test of two types of artillery fuzes. 8-12 
small-scale comparison test of two types of mine fuzes, 8-10 
stopwatches, life tests of three types, 16-13 
thermometers, intercomparison of, 13-14 
thickness of mica washers, 2-1 
transistors, forward current transfer ratio of two types, 16-9 
transistors, output admittance of two types, 16-11 
transistors, reverse-bias collector current of 20, 16-4 
transistors, reverse-bias collector currents of two types, 16-8 
vacuum tube failures, 9-9 
weight of shell powder, 3-3 

Davies, 0. L., 6-42; 11-6; 12-21; 14-2, -4, -5 
Davis. F. A., 2-12; T-37, -41 
Day, B. B., 9-9, -10 
DeBaun, R. M., 14-6, -7 
Decisions 

(See also: Conclusions; Data; Statistical Tests; Uncertainties, Expression of) 
approach to a problem, 1-15 
procedure, general remarks on factors involved, 3-2 
using statistics to make, 1-15 

Deckman, D. A., 14-7 
Defectives, in sample of new product, data sample, 8-1 
Degrees of Freedom 

definition of uses in statistics, quote from "A Dictionary of Statistical Terms," 2-3 
figure showing d.f. required to estimate standard deviation with stated precision, 2-12 

8 , sign of difference, 3-1 
DeLury, D. B., 6-42 
Deming-, W. E., 1-11. -13, -14; 2-9 
U. S. Department of Agriculture, 1-13, -14 

1-5 



EXPERIMENTAL STATISTICS 

Deviates 
(See also: Normal Deviates; Random normal deviates) 
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(See also: Blocked Designs; Block Plans, Chain, Incomplete, and Randomized; Ex- 
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Hodges, J. L., Jr., 10-24 
Hoerl, A. E., 14-8 
Holt, Rinehart, and Winston, Inc., 5-7 
Hotelling, H., 14-7 
Houghton Miffiin Company, 5-46 
Hooke's law, 5-3 
Houseman, E. E., 6-42 
Hunt, G. A., 9-6 
Hunter, J. S., 14-4, -5, -6, -7 
Hypotheses, choice of null and alternative, 1-16 
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Ice, latent heat of fusion of, data sample, 3-23, -30 
Imperial Bureau of Soil Science, Harpenden, England, 12-21 
Inductive Statistics 

(See Statistics, Inductive) 
Industrial and Engineering Chemistry, 14-7, -8 
Industrial Quality Control, 9-6; 14-4, -5; 17-6; 18-2, -4; T-14 
Institute of Radio Engineers, 14-7 
Institute of Statistics, Raleigh, N. C, 13-46, 14-6 
International Statistical Institute, 9-9, -10; 14-7 
Interpretations 

(See also: Conclusions; Data; Decisions; Uncertainties, Expression of) 
of data 

cautions to be observed in statistical tests, 1-18 
risks involved in conclusions from small samples, 1-19 

Interstate Printers and Publishers, Inc., T-80 
Iowa State College, 6-42, 14-8 
Richard D. Irwin, Inc., 18-4 

James, G. S., 3-42 
The Johns Hopkins Press, 5-46, 22-4 
Johns Hopkins University, Baltimore, Md., 14-6 
Johnson, N. L., 15-6, 20-13 
Journal of the Aeronautical Sciences, 19-4 
Journal, American Ceramic Society, 14-7 
Journal, American Statistical Association, 14-5, -6; 21-6 
Journal of Applied Physics, 19-4 
Journal of Industrial Engineering, 14-8 
Journal of Polymer Science, 19-4 
Journal of Research, National Bureau of Standards, 19-4 
Journal of the Royal Statistical Society, 14-6, 20-13 

k , number of categories of classification, 9-6 
K, factor in approximating limits when m and a are unknown   (form, X — Ks and 

X + Ks , based on sample statistics X and s) , 1-14 
K , factors, for tolerance limits, normal distributions 

one-sided limits, T-14 
two-sided limits, T-10 

K , multiple of s used in setting tolerance limits, 1-14 
Kase, S., 19-4 
Kärber method of analysis, 10-3 
Kempthorne, O., 11-6 
Kendall, M. G., 2-15, 6-42, 20-13 
Kenworthy, O. O., 14-8 
Kern, D. Q., 14-8 
Knudsen, L. F., 10-24 
Kononenko, O. K., 14-7 
Kriegel, W. W., 14-7 
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Latin Square Plans 
analysis, 13-32 
data sample, 13-33 

estimation of row (or column) effects, 13-35 
estimation of treatment effects, 13-33 
symbols, definitions of, 13-32 
testing and estimating differences in row (or column) effects, 13-35 

procedure and example, 13-35 
testing and estimating differences in treatment effects, 13-34 

procedure and example, 13-34 
discussion, general, 13-1 
planning, 13-30 

table of selected Latin squares, 13-31 
Least squares theorem, discussion and example equations, 6-3 
Lehman, S. Y., iii 
Lev, J., 5-7 
Levels of Confidence 

(See Confidence Levels) 
Lieberman, G. J., 1-19; 3-7, -12, -13, -14, -18, -19; 4-14; T-14, -59 
Lieblein, J., 19-1, -2, -3, -4 
Limits 

(See: Confidence Intervals; Tolerance Limits) 
Lind, E. E., 4-8 
Lindley, D. V., T-34 
Lindzey, G., 20-13 
Linearity 

(See: Linear Relationships; Transformations) 
Linear Relationships 

between two variables 
characterizing, discussion, 5-1 
determining form of empirically, procedures for plotting on graph, semilog, and 

log-log papers, 5-30 
figure showing plotted data, 5-1 
plotting the data, 5-1 
two important systems of, discussion and definitions, 5-3 
table, summary of FI, FII, SI, SII, 5-9 
table, linearizing transformations, changes of variables and formulas to convert 

resulting constants to original form, 5-31 
transformations, non-linear to linear, discussion and procedures, 5-30 
basic worksheet for all types, 5-10 
functional relationships FI and FII, discussion and definitions, 5-3 

FI relationships 
figure showing, 5-4 
problems and procedures, 5-11 
figure showing Young's modulus of sapphire rods as function of temperature, 

5-12 
procedure, best line to be used for estimating y from given values of x, 5-12 
worksheet example of Young's modulus as function of temperature, 5-13 
procedure, confidence interval estimates for: line as a whole; a point on the 

line; future value of Y corresponding to given value of x, discussion, 5-15 
procedure, predicting  (1-a)  confidence band for line as a whole, 5-16 

table, computational arrangement for procedure and example calculations, 
5-16 

procedure, estimating  (1-a)  confidence interval for a single point on the line, 
5-18 

procedure, estimating   (1-a)   confidence interval for future value of Y corre- 
sponding to given value of x , 5-19 

procedure, estimating confidence interval for slope of true line, 5-19 
procedure, using fitted regression line to obtain interval estimate of x that 

produced observed new values of Y , 5-20 
procedure,  using  fitted  regression  line to  choose  value  of X expected with 

confidence  (1-a)  to produce a value Y not less than a specified Q , 5-21 
testing assumption of linear regression, discussion, 5-22 

table, computational arrangement for test of linearity, 5-22 
procedure, testing assumption of linear regression, 5-23 
when intercept is known equal to zero, lines through the origin, discussion, 5-24 

procedure, variance of Y's independent of x , 5-24 
worksheet example, 5-25 
procedure, variance proportional to x , 5-25 
procedure, errors of Y'a cumulative (cumulative errors), 5-26 
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Linear Relationships (cont) 
between two variables (cont) 

FII relationship 
distinguishing features of, discussion, 5-27 
figure showing, 5-5 
procedure, simple method of fitting the line (general case), 5-27 

data sample, 5-27 
figure showing relationship between two methods of determining a chemical 

constituent, 5-28 
important exceptional case, discussion and examples, 5-29 

statistical relationships SI and SII, discussion and definitions, 5-5 
SI relationship 

discussion with example, 5-6 
figure showing normal bivariate frequency surface, 5-6 
figure showing six contour ellipses for normal bivariate distributions having 

different values of five parameters, 5-7 
SII relationships 

discussion and example, 5-7 
figure showing effect of restrictions of X or Y on regression of Y on X, 5-8 

Link, R. F., T-28 
Link-Wallace test, table of critical values of L for, T-28 
Linnig, F. J., 18-4 
Lipka, J., 5-46 
Lord, E., T-26 

M 

TO , arithmetic mean (or "the mean") of the distribution, 1-8 
w , average of new material, product, or process, (unknown), 3-3 
TO , center of gravity of a distribution, 1-8 
w , location parameter of a normal distribution, 1-8 
m , median of a curve (the center of gravity), 1-8 
w , number of materials, etc., to be compared, 9-6 
TOO , average performance of a standard material, product, or process (known), 3-3 
The Macmillan Company, 11-6 
Madhava, K. B., 14-7 
Mainland, D., T-55 
Mandel, J., 5-46, 18-4 
Mantel, N., 10-24 
Massey, F. J., Jr., 1-19; 10-24; T-4, -5, -24, -27, -45, -78 
Matrix Methods, 6-37 

formulas using triangular factorization of normal equations, 6-37 
triangularization of matrices, 6-38 

Maxfield, M. W., 2-12; T-37, -41 
McCarthy, P. J., 10-24 
McGraw-Hill Book Company, Inc., 1-7, -19; 4-14; 6-42; 10-24; 11-6; 14-6; 17-6; 20-13; 

22-4; T-4, -5, -10, -24, -27, -45, -78 
Mean, Population 

(See Population Mean) 
Measured Performance 

(See Performance, Measured) 
Measurements 

(See also: Performance, Measured; Samples) 
number required to establish distribution mean with prescribed accuracy, discussion 

of methods for determining, 2-9 
number required to establish variability -with stated precision, 2-12 

Metal castings, causes of rejection, data sample, 9-6 
Meters, electricity, breakdowns of, data sample, 9-4 
Methods of inductive statistics, 1-2 
Metron, 20-13 
Mickey, M. R., 14-6 
Mooney, R. B., 14-8 
Moroney, M. J., 1-19 
Mosteller, F., 1-4, -5, -19; 20-13 
Multivariable Relationships 

(See Polynomial and Multivariable Relationships) 
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N 

n, total number of items, 9-6 
n , total number of observations, 1-10 
rii, degrees of freedom for numerator, T-6 
n2, degrees of freedom for denominator, T-6 
Hi , size of sample for the ith material, product, or process, 9-6 
National Bureau of Standards, 4-14, 6-42, 12-21; 19-1, -4; T-59 
Natrella, Mary G., Title pages, iii, 21-1 
Nature, 14-6 
National Advisory Committee for Aeronautics, Technical Note, 19-4 
Naval Ordnance Laboratory, White Oak, Md., 10-24 
Naval Ordnance Test Station, China Lake, Calif., 2-13; T-37, -41 
New York Academy of Science, 14-7 
New York University, 14-6, -7; T-55 
Neyman, J., 4-14 
New products, defectives in sample of, data sample, 8-1 
Nickel, spectographic determination of, data sample, 13-22 
Non-linear Relationships 

(See also, Linear Relationships) 
between two variables, transformation to linear, 5-30 

Normal Deviates, random, short table of, T-86 
Normal Distribution 

(See also, Distribution, Normal) 
determined by m and a , 1-8 

North Carolina Agricultural Experiment Station, 13-46 
North Carolina State College, 14-4, -6, -7, -8 
v , degrees of freedom, 2-10 
Null Hypothesis 

(See also, Hypotheses) 
definition, 1-16 

Numbers 
(See Random Numbers) 

Observations, table of, criteria for rejection of outlying, T-27 
OC Curves 

(See: Curves;  Operating Characteristic  (OC)  Curves; Performance Average; Per- 
formance, Variability of; Statistical Analysis; Statistical Tests) 

Oliver and Boyd, London, 2-15; 6-29, -42; T-5, -32, -33 
Oliver and Boyd, Ltd., Edinburgh, 11-6; 13-46; 14-2, -4, -5 
Olmstead, P. S., 18-2, -4 
Olson, L. R., 14-7 
Operating Characteristics 

(See: Operating Characteristic  (OC)  Curves; Performance Average; Performance, 
Variability of; Statistical Analysis; Statistical Tests) 

Operating Characteristic (OC) Curves 
(See also: Curves;  Performance, Average; Performance Variability of;  Statistical 

Analysis; Statistical Tests) 
of a statistical test, 1-17 
figures showing curves for 

one-sided x2 test, to determine whether <r, exceeds <r0 (a = .05) , 4-4 
one-sided x~ test, to determine whether a, is less than o„ (a = .05) , 4-6 
one-sided F-test, to determine whether a A exceeds an (a = .05; WA = nB) , 4-11 
one-sided   F-test,   to   determine   whether   a A   exceeds   an    (a   =   .05;   »u   =   nB, 

3-n.A = 2nB , 2nA = nB) , 4-12 
one-sided F-test, to determine whether a A exceeds as (a = .05; V,A = nB , 2HA = 3nB ; 

TIA = 2nn) , 4-13 
one-sided normal test (a = .01) , 3-19 
one-sided normal test (a = .05) , 3-18 
two-sided normal test (a = .01) , 3-2 
two-sided normal test (a = .05) , 3-11 
one-sided i-test (a = .01) , 3-15 
one-sided t-test (a = .05) , 3-14 
two-sided «-test (a = .01) , 3-7 
two-sided t-test (a = .05) , 3-6, 21-3 
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Optimum Conditions or Levels 
(See also, Response Function) 
discussion, general, 14-1 
experimental designs to determine, 14-3 
experiments to determine, 14-1 through 14-8 
finding the optimum, 14-3 
recommended sources for further study, 14-4 

Orthogonal Polynomials 
(See Polynomial and Multivariable Relationships) 

Outliers, Treatment of, 17-1 through 17-6 
rejecting observations 

discussion of problem, 17-1 
in routine experimental work, 17-2 
in a single experiment 

extreme observations in only one direction considered rejectable, 17-4 
mean and standard deviation unknown, sample is only source of information, 

17-4 
Dixon criterion, procedure, 17-4 

mean unknown, value of standard deviation assumed, 17-5 
extreme standardized deviate from sample mean, procedure, 17-5 

mean and standard deviation unknown, independent external estimate of devi- 
ation available, 17-5 
extreme studentized deviate from sample mean; the Nair criterion, proce- 

dure, 17-5 
mean and standard deviation known, 17-6 

procedure and example, 17-6 
extreme observations in either direction considered rejectable, 17-3 

mean unknown, value for standard deviation assumed, 17-3 
procedure, 17-3 

mean and standard deviation unknown, sample is only source of information, 
17-3 
Dixon criterion, procedure and example, 17-3 

mean and standard deviation unknown, independent external estimate of devi- 
ation available, 17-3 
studentized range, procedure, 17-3 

mean and standard deviation known, 17-4 
procedure and example, 17-4 

table, criteria for rejection of outlying observations, T-27 
Owen, D. B., 2-15, T-59 

P , proportion of elements in a population, 1-8, -9 
Pachares, J., T-18 
Pearson, E. S., 3-42; 4-14; 6-42; T-6, -30, -31 
Penguin Books, Inc., 1-19 
Percentages 

(See also: Performance, Average; Performance, Variability of) 
figure showing percentage of population in various intervals of normal distribution, 

1-9 
table, percentage points of extreme studentized deviate from sample mean, T-30 
table, percentiles of the x2 distribution, T-4 
table, F distribution, T-6 

table, F' = — , T-24 w„ 
table, for 0 , T-26 
table, for 0', T-26 
table, for the studentized range, q , T-18 
table, for the t-distribution, T-5 

Performance Average 
(See also: Tests, Distribution-free; Tests, Shortcut) 
best single estimate of, 2-1 

procedure and example, 2-2 
comparing materials or products 

discussion, 3-1 
statistical tests, discussion of uses in testing for differences, 3-1 

confidence interval estimates of, 2-1 
general remarks, 2-2 
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Performance, Average (cont) 
estimating from a sample, discussion, 2-1 
comparing new product with a standard 

discussion, 3-3 
table, summary of Chapter 3 techniques for comparing, 3-4 
does new product differ from a standard 

(a known) two-sided normal test 
operating characteristics of test, 3-9 
figure showing OC curves (a = .01) , 3-12 
figure showing OC curves (a = .05) , 3-11 
procedure and example, 3-8 
selection of sample size n , 3-9 

(a unknown) two-side i-test 
operating characteristics of test, 3-5 
figure showing OC curves (a = .01) , 3-7 
figure showing OC curves (a = .05) , 3-6 
procedure and example, 3-4 
selection of sample size n, 3-5 

does new product exceed a standard 
(a known) one-sided normal test 

operating characteristics of test, 3-17 
figure showing OC curves (a = .01) , 3-19 
figure showing OC curve (a = .05) , 3-18 
procedure and example, 3-16 
selection of sample size n, 3-17 

does new product exceed a standard (cont) 
(<r unknown) one-sided t-test 

operating characteristics of test, 3-13 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a — .05) , 3-14 
procedure and example, 3-13 
selection of sample size n, 3-16 

is new product less than a standard 
(a known) one-sided normal test 

operating characteristics of test, 3-21 
figure showing OC curves (a = .01) , 3-19 
figure showing OC curves (a = .05) , 3-18 
procedure and example, 3-21 
selection of sample size n, 3-22 

(a unknown) one-sided i-test 
operating characteristics of test, 3-20 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a = .05) , 3-14 
procedure and example, 3-20 
selection of sample size n , 3-21 

comparing two materials, products, or processes 
discussion, 3-22 
table, summary of Chapter 3 techniques for comparing, 3-22 
do products A and B differ 

a* and as known, two-sided normal test 
operating characteristics of test, 3-31 
figure showing OC curves (a = .05) , 3-11 
procedure and example, 3-30 
selection of sample size n , 3-31 

OA and an unknown, but assumed equal, two-sided t-test 
operating characteristics of test, 3-24 
figure showing probability of rejection of hypothesis mA — wn , 3-25 
procedure and example, 3-24 
selection of sample size n , 3-26 

ax and <TB unknown, cannot be assumed equal, two-sided t-test 
discussion of test procedure, 3-28 
figure showing OC curves (a = .05) , 3-6 
procedure and example, 3-27 

paired observations 
discussion, 3-31 
operating characteristics of test,. 3-32 
procedure and example, 3-32 
selection of number of pairs n , 3-33 
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Performance, Average (cont) 
comparing two materials, products, or processes (cont) 

does product A exceed B 
OA and CTB known, one-sided normal test 

operating characteristics of test, 3-38 
figure showing OC curves (a = .01) , 3-19 
figure showing OC curves (a — .05) , 3-18 
procedure and example, 3-37 
selection of sample size n , 3-38 

paired observations 
discussion, 3-38 
operating characteristics of test, 3-39 
procedure and example, 3-39 
selection of number of pairs n , 3-40 

OA. and OB unknown, but assumed equal, one-sided t-test 
operating characteristics of test, 3-35 
figure showing OC curves (a = .01) , 3-15 
figure showing OC curves (a = .05) , 3-14 
procedure and example, 3-34 
selection of sample size n , 3-35 

OA and oa unknown, cannot be assumed equal 
procedure and example, 3-36 

comparing several products 
do t products differ, equal sample sizes 

discussion, 3-40 
procedure and example, 3-41 

Performance, Measured 
characterizing of a material, product, or process, 2-1 

Performance, Qualitative 
characterizing of 

data sample, 7-1 
discussion, 7-1 
one-sided confidence intervals, 7-3 
approximate limits for n > 30 (one-sided), procedure and example, 7-3 
exact limits for n =S 30 (one-sided), 7-3 
exact limits for n > 30 (one-sided), 7-3 
best single estimate of true proportion, procedure and example, 7-1 
confidence interval estimates of true proportion, 7-2 

two-sided intervals, 7-2 
approximate limits for n > 30 (two-sided), procedure and example, 7-2 
exact limits for n ^£30 (two-sided), 7-2 
exact limits for n > 30 (two-sided), 7-2 

sample size required to estimate true proportion; 
discussion, 7-4 
with a specified limit of error in both directions (± 8) , 7-4 

graphical method 
discussion, 7-4 
procedure and example, 7-4 

numerical method 
discussion, 7-5 
procedure and example, 7-5 

with a specified limit in only one direction (+ S or — S) 
discussion, 7-5 
procedure and example, 7-6 

Performance, Several Categories 
comparing materials or products with respect to (chi-square test) 

discussion of classification scheme, 9-1 
test of association between two methods of classification 

data sample, 9-9 
discussion, 9-8 
procedure and example, 9-9 
table, computational arrangement for data sample on vacuum tube failures, 9-10 

comparing with a standard 
data sample, 9-2 
procedure and example, 9-3 
table, computational arrangement for data sample on clinical thermometers, 9-3 

comparing with a theoretical standard 
data sample, 9-4 
procedure and example, 9-5 
table, computational arrangement for data sample on electricity meters, 9-5 

comparing two or more products 
data sample, 9-6 
definitions of symbols used, 9-6 
procedure and example, 9-6 
simplified computation for m = 2, 9-8 
simplified computation for m = 2 when n, = n?, 9-8 
table, computational arrangement for data sample on metal castings, 9-7 
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Performance, Two-fold Classification 
comparing materials or product with respect to, discussion, 8-1 
comparing observed proportion with a standard 

does new product differ from a standard 
procedure for n ^= 30, 8-1 

data sample, 8-1 
procedure and example, 8-2 

procedure for n > 30, 8-2 
data sample, 8-2 
procedure and example, 8-3 

does new product exceed a standard 
procedure for n ^ 30, 8-3 

procedure and example, 8-3 
procedure for n > 30, 8-4 

procedure and example, 8-4 
is new product less than a standard 

procedure for n =s 30, 8-5 
procedure and example, 8-5 

procedure for n > 30, 8-5 
procedure and example, 8-5 . 

sample size required to detect a difference of prescribed magnitude 
when sign of difference is important, 8-7 

procedure and example, 8-8 
when sign of difference is not important, 8-6 

procedure and example, 8-6 
comparing two observed proportions 

discussion, 8-9 
table, observed frequencies from two samples from two mutually-exclusive cate- 

gories, 8-9 
table, rearranged for use with Table A-29, 8-12 
when sample sizes are equal 

data sample, 8-10 
discussion, 8-9 
does product A differ from B, 8-10 

procedure and example, 8-10 
does product A exceed B, 8-11 

procedure and example, 8-11 
when sample sizes are large 

does product A differ from B, 8-16 
data sample, 8-16 
procedure and example, 8-16 

does product A exceed B, 8-18 
procedure and example, 8-18 

when sample sizes are unequal and small 
does product A differ from B, 8-12 

data sample, 8-12 
data, rearranged for use with Table A-29, 8-13 
procedure and example, 8-12 

does product A exceed B, 8-14 
data sample, 8-14 
data, rearranged for use with Table A-29, 8-15 
procedure and example, 8-14 

sample size required to detect a difference of prescribed magnitude 
when the sign of difference is important, 8-20 

procedure and example, 8-20 
when sign of difference is not important, 8-18 

procedure and example, 8-19 
Performance, Variability of 

estimating, general discussion, 2-6 
estimating when no sample data are available, discussion, 2-8 
single estimates of s- and s, procedure and example, 2-6 
one-sided confidence interval estimates for (Si, or Si.) , discussion, 2-7 

procedure and example, 2-8 
two-sided confidence interval estimates for (sL and sv) , procedure and example, 2-7 
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Performance, Variability of (cont) 
comparing new material or product with a standard 

discussion, 4-1 
does new product differ from a standard, 4-1 

operating characteristics of test, 4-2 
procedure and example, 4-2 

does new product exceed a standard, 4-3 
operating characteristics of test, 4-3 
figure showing OC curves of one-sided x"-test (a — .05) and various n values, 4-4 
procedure and example, 4-3 
selection of sample size, 4-4 

is new product less than a standard, 4-5 
operating characteristics of test, 4-6 
figure showing OC curves of one-sided x2-test (a = .05) and various n values, 4-6 
procedure and example, 4-5 
selection of sample size, 4-7 

comparing two materials or products 
discussion, 4-8 
does product A differ from B, 4-8 

operating characteristics of test, 4-9 
procedure and example, 4-9 

does product A exceed B, 4-9 
operating characteristics of test, 4-10 
figure showing OC curves of one-sided F-test (a = .05; nA = nR) , 4-11 
figure showing OC  curves of one-sided F-test   (a = .05; nA = nB , 3nA = 2nB , 

2nA = nn) , 4-12 
figure showing OC  curves of one-sided F-test   (a = .05; nA = nB , 2nA = 3nB , 

nA = 2««) , 4-13 
procedure and example, 4-10 
selection of sample size, 4-11 

Pesek, J. T., 14-8 
Planning 

(See Experiments, Planning and Analysis of) 
Pike, F. P., 14-8 
Plates, surface hardness of, data sample, 3-34 
Plotting 

(See: Data: Histograms; Linear Relationships; Plotting paper) 
Plotting paper, procedures for use of to determine form of a relationship empirically, 

5-30 
Polynomial and Multivariable Relationships 

analysis by method of least squares, 6-1 
discussion of many-variable relationships and analysis techniques, 6-1 
correlated measurement errors, 6-22 

discussion of procedures and examples, 6-22 
examples, 6-23 
procedures, 6-22 

inequality of variance, 6-19 
discussion of procedures and examples, 6-19 
examples, 6-21 
procedures, 6-20 

least squares theorem, discussion and example equations, 6-3 
matrix methods, 6-37 

formulas using triangular factorization of normal equations, 6-37 
remarks on values needed for computations, 6-41 
triangularization of matrices, 6-38 

multiple measurements at one or more points, discussion and example equations, 6-17 
multivariable functional relationships, 6-4 

discussion of procedures and examples, with data sample and equations, 6-5 
use and assumptions, discussion and sample of tabulated data and equations, 6-4 
formation of normal equations, Step (1) 

example, 6-7 
procedure, 6-6 

solution of normal equations, Step (2) 
example, 6-9 
procedure, 6-8 

calculation of deviation between predicted and observed values of Y's, Step (3) 
example, 6-11 
procedure, 6-10 

estimation of a2 , Step (4) 
example, 6-11 
procedure, 6-10 

estimation standard deviations of the coefficients, Step (5) 
example, 6-13 
procedure, 6-12 
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Polynomial and Multivariable Relationships (cont) 
multivariable functional relationships (cont) 

standard deviation of a linear function of the ß's, Step (6) 
example, 6-13 
procedure, 6-12 

standard deviation of a predicted point, Step (7) 
example, 6-13 
procedure, 6-12 

analysis of variance test of significance of group of p < k of coefficients, Step (8), 
procedure, 6-14 

analysis of variance test of significance of last coefficient, Step  (8), example, 6-15 
confidence interval estimates, Step (9) 

example, 6-17 
procedure, 6-16 

polynomial fitting, 6-18 
discussion and example equations, 6-18 

use of orthogonal polynomials with equally spaced x values, 6-26 
discussion of procedures and examples, 6-26 
equations showing ß's as a function of a's for polynomials up to 5th degree, 6-36 
sample table of orthogonal polynomials, 6-28 
Step  (1), example, 6-31 

procedure, 6-31 
Step  (2), example, 6-31 

procedure, 6-30 
Step  (3), example, 6-33 

procedure, 6-32 
Step  (4), example, 6-33 

procedure, 6-32 
Step (5), example, 6-33 

procedure, 6-32 
Step  (6), example, 6-35 

procedure, 6-34 
polynomials, up to 5th degree, equation showing ß's as a function of a's , 6-36 

Population Mean, Estimation of 
using a single sample 

procedure and example for determining sample size required, 2-10 
using sample taken in two stages 

discussion of method, 2-10 
procedure and example for determining sample size required, 2-11 

Populations 
concepts, 1-1 
examples of, 1-1 
importance of knowing "parent" population from which sample is taken, 1-5 
types of "parent" populations, 1-5 

Powder 
• (See also, Rocket powder) 
weight of for shells, data sample, 3-3 

Prentice-Hall, Inc., 1-19; 3-7, -12, -13, -14, -18, -19; 4-14; 18-4 
Princeton University, T-28 
Probability Level 

one-sided and two-sided tests 
tables for testing significance in 2 x 2 tables with unequal sample sizes, T-59 

Probit Method of Analysis, 10-8 
(See also, Sensitivity Testing) 
table, maximum and minimum working probits and range, T-33 
table, weighting coefficients for, T-32 

Probit paper, use of to plot probit solution, 10-10 
Probits 

(See Probit Method of Analysis) 
Proportion 

table, arc sine transformation for, T-54 
table, confidence belts for (sample sizes greater than 30), T-45 
table, one-sided confidence limits for (sample sizes less than 30), T-41 
table, two-sided confidence limits for (sample sizes less than 30), T-37 
table,  cumulative  normal  distribution, values of P corresponding to zT for normal 

curve, T-2 
table, sample sizes required for comparing with a standard, sign of difference is im- 

portant, T-51 
table, sample sizes required for comparing with a standard, sign of difference is not 

important, T-48 
Proschan, F., 17-6 
Publications,  referenced  for adapted,  reproduced, quoted, or recommended statistical 

works 
American Standard Control Chart Method of Controlling Quality During Production, 

Z 1.3 - 1958, 18-3, -4 
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Journal of the Aeronautical Sciences, 19-4 
Journal, American Ceramic Society, 14-7 
Journal of American Statistical Association, 1-19; 2-12; 5-46; 10-24; 14-5, -6; 19-4; 
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American Cyanamid Company, T-79 
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20-13; 22-4; T-4, -5, -10, -24, -27, -45, -78 
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New York Academy of Science, 14-7 
New York University, 14-6, -7; T-55 
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University of London, 4-14 
University of Toronto Press, 6-42 
U. S. Government Printing Office, 6-42, 12-21 
Van Nostrand, Inc., 18-4 
John Wiley & Sons, Inc., 1-8, -11, -19; 2-9; 5-46; 6-42; 11-6; 12-21; 13-40; 14-4, -5, 

-6, -7; 17-6 

Qualitative Performance 
(See Performance, Qualitative) 

Quenouille, M. H., 11-6 

r, table, critical values of, for sign test (one-sided and two-sided tests), T-78 
R , range (difference between largest and smallest), 1-2 
Ri , (i = 1, 2, . . .) as sample distribution of muzzle velocities in samples of size 10, 1-2 
Ä, , where i = 1, 2, . . . , collectively determine sampling distribution of range, 1-2 
The Rand Corporation, 1-6, -19; T-82, -86 
Randomization 

(See: Block Plans, Randomized; Experiments, Planning and Analysis of; Randomized 
Plans; Random Sampling) 

Randomized Plans 
analysis, 13-2 
completely-randomized plans, 13-1 
discussion, general, 13-1 
table, schematic presentation of results, 13-2 

Random normal deviates, short table of, T-86 
Random numbers, short table of, T-82 
Random Sampling 

basic concepts, 1-4 
simple (or unrestricted), 1-4 
selection of sample 

basic concepts, 1-6 
discussion of methods, 1-6 
use of tables of random numbers, 1-6 

Range 
table, factors for converting to estimate of a (= Range/d«) , 2-6 
table, maximum and minimum working probits and range, T-33 
of n observations, defined as difference between highest and lowest of the n values, 2-6 
table, percentiles of the studentized range q , T-18 
sample range as an estimate of standard deviation, 2-6 

Rank  sum,  table  of critical  values of smaller,  for the  Wilcoxon-Mann-Whitney test 
(one-sided and two-sided), T-80 

Read, D. R., 14-7 
Rejecting Observations 

(See Outliers, Treatment of) 
Rejection 

(See also: Outliers, Treatment of) 
of outlying observations, table of criteria for, T-27 
figure  showing probability of rejection of hypothesis rax = mfl when true, plotted 

against e , 3-25 
Relationships 

(See: Functional Relationships; Linear Relationships; Polynomial and Multivariable 
Relationships;  Statistical Relationships) 

Replication 
(See Experiments, Planning and Analysis of) 

Resistors 
conversion gain of, data sample, 13-4 
noise measurement of, data sample, 13-14 
reverse-bias collector current of 10, data sample, 16-2 
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Response Function, 14-1 
in a factorial experiment, 14-1 
figure showing a response surface, 14-2 
figure showing contours for a response surface with 22 factorial design, 14-2 

Results, Final 
(See Uncertainties, Expression of) 

Review, International Statistical Institute, 14-7 
Richey, G. G., 5-46 
Rider, P. R., 17-6 
Rietz, H. L., 5-46 
Ringelman, R. E., 14-7 
Roberts, H. V., 1-19, 21-6 
Rocket powder, burning time of, data sample, 2-6 
Rockwell hardness table, for use in preparing histograms, 1-7 
Rosenblatt, M., 10-24 
Roth, P. B., 14-8 
The Royal Society A, Proceedings of, 19-4 
Rubber Age, 5-46 

s, standard deviation estimate computed from n measurements on new product (used 
where a is unknown), 3-3 

s , unbiased estimator of a , 1-10 
s2 , best unbiased sample estimate of variance, in estimate of a, 1-10 
s2 , formula of, for computational purposes, 1-10 
SI,  statistical  relationship, when errors of measurement are negligible compared to 

variation of each item, 5-6 
SII , statistical relationship, when range of one or two variables is preselected or re- 

stricted, 5-6 
Samples, concepts, 1-1 
Sample mean, table, percentage points of extreme deviate, T-30 
Sample Range 

(See Range) 
Sample Size 

(See  also:  Measurements;   Population  mean;  and  selection  of  sample  size,  under 
specific topics of interest) 

number required to establish distribution mean with prescribed accuracy, discussion 
of methods for determining, 2-9 

table, sizes required to detect prescribed differences in averages, when sign of differ- 
ence IS important, T-17 

table, sizes required to detect prescribed differences in averages, when sign of differ- 
ence IS NOT important, T-16 

table, sizes required for comparing a proportion with a standard, when sign of differ- 
ence IS important, T-48 

table, sizes required for comparing a proportion with a standard, when sign of differ- 
ence IS NOT important, T-48 

Sampling 
(See also, Random Sampling) 
importance of knowing the "parent" population from which sample is taken, 1-5 
principles of, 1-4 
quote on randomization, 1-5 
techniques, 1-4 

Sampling Distribution 
of X for samples of size 10, 1-2 
figure showing distribution of sample mean X for samples of various sizes from same 

normal distribution, 1-11 
figure showing distribution of sample variance s2 for samples of various sizes from 

same normal distribution, 1-11 
Sampling, Random 

(See Random Sampling) 
Sampling scheme, conditions to be insured by, 1-4 
Sanderson, B. S., 14-8 
Sandia Corporation, 2-15 
Sandomire, M. M., 2-12 
Sapphire rods, Young's modulus vs., temperature for, data sample, 5-11 
Savage, L. J., 14-6 
Scarborough, J. B., 5-30, -46; 22-4 
Scheffe, H., 11-6 
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Schneider, A. M., 14-7 
Sensitivity Testing 

applications of term, 10-1 
data, collecting1 and analyzing, discussion of methods, 10-2 
data sample, 10-2 
experimental situation, discussion and examples, 10-1 
Kärber method of analysis 

discussion, 10-3 
selection of stimulus levels, 10-3 
general solution for, 10-4 

example, 10-5 
procedure, 10-4 
table, example analysis data, 10-5 

simplified  solution for special case, test levels equally spaced, equal numbers of 
items tested at each level, 10-6 
example, 10-7 
procedure, 10-6 
table, example analysis data, 10-7 

probit method of analysis 
discussion, 10-8 
method, basis of, discussion and formulas, 10-9 
selection of stimulus level, 10-8 
solutions, discussion, 10-9 
exact probit solution, discussion, 10-16 

example, 10-17 
procedure, 10-16 
table, example analysis data, 10-17 
example for additional iteration, 10-19 
procedure for additional iteration, 10-18 
table, example analysis data for second iteration, 10-19 

graphical solutions, discussion, 10-10 
example, 10-11 
procedure, 10-10 
table, example analysis data, 10-11 
figure showing probit regression line, fitted by eye, 10-13 

using probit regression line for prediction, 10-21 
estimate of proportion expected to respond at specified levels, 10-21 
estimates of stimulus levels, 10-21 

testing whether line is adequate representation of data, 10-20 
example, 10-20 
procedure, 10-20 
table, test of linearity, example final probit equation, 10-20 

when stimulus levels cannot be controlled, discussion, 10-24 
up-and-down design, 10-22 

discussion of method, 10-22 
procedure, 10-23 

Severo, N. C, iii 
Shells, penetration depth of, data sample, 15-1 
Shewell, C. T., 14-8 
Shewhart, W. A., 1-13; -14; 18-4 
Shrikhande, S. S., 13-46 
Shortcut Tests 

(See Tests, Shortcut) 
a,  distance  from m to  either of two inflection points on normal  distribution curve 

("radius of gyration" of distribution about TO) , 1-8 
<r, measure of the spread, scatter, or dispersion of a normal distribution, 1-8 
a, standard deviation  (or population mean; population standard deviation), 1-8 
a, known standard deviation of new product, 3-3 
a«, known variability of a standard, measured by its standard deviation, 4-1 
a2 , second moment about m , 1-8 
a2 , variance of the distribution, 1-8 
2 , example formulas, using as shorthand for "the sum of," 1-10 
Signed-ranks Test 

table,  critical values of smaller rank sum for Wilcoxon-Mann-Whitney test  (one- 
sided and two-sided), T-80 

table, critical values of Ta (n) for, (one-sided and two-sided), T-79 
Significance 

(See, Tests of Significance) 
Significance Level 

of a statistical test, 1-17 
choice of, for statistical tests, 1-17 
table, minimum contrasts required for, in 2 X 2 tables with equal sample sizes, T-55 

T-55 
tables, for testing significance in 2 x 2 tables with unequal sample sizes  (one-sided 

and two-sided tests), T-59 
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Significant Contrasts 
(See, Contrasts) 

Sign Test 
(See also, Tests, Distribution-free) 
table, critical values of r for (one-sided and two-sided tests), T-78 

Skewness 
figure showing frequency distributions of various shapes, 1-8 

Smith, A. C, 14-7 
Smith, W. N., 14-7 
Square Plans 

(See: Latin Square Plans; Youden Square Plans) 
Somerville, P. N., iii; T-75, -76, -77 
Staircase Methods 

(See, Sensitivity Testing, Up-and-Down Designs) 
Standard Deviation 

(See Deviation, Standard) 
Stanford University, T-59 
Statement of Tolerance Limits 

(See Tolerance Limits) 
Statistical Analysis 

(See also: Distribution-free Technique; Sensitivity Testing; Tests of Significance) 
Kärber method, 10-3 
probit method, 10-8 
table, percentiles of the x2 distribution, T-4 
of samples from binomial distributions 

table, arc sine transformations for proportions, T-54 
table, confidence belts for proportions for n > 30  (confidence coefficients .90, .95, 

.99) , T-45 
table, confidence limits for a proportion (one-sided), T-41 
table, confidence limits for a proportion (two-sided), T-37 
table,  minimum  contrasts  required  for  significance  in  2   x  2  tables with equal 

samples, T-55 
table,  sample  size  required  for  comparing proportion  with  a  standard,  sign of 

difference NOT important, T-48 
, sign of difference IS important, T-51 

table for testing significance in 2 x 2 tables with unequal samples, T-59 
of samples from normal distributions 

table,  confidence belts for correlation coefficient   (confidence coefficient .95), T-31 
table, criteria for rejection of outlying observations, T-27 
table, critical values of L for Link-Wallace test, T-28 
table, factors for one-sided tolerance limits, T-14 
table, factors for two-sided tolerance limits, T-10 
table, factors for computing one-sided confidence limits for a , T-36 
table, factors for computing two-sided confidence limits for a , T-34 
table, maximum and minimum working probits and range, T-33 
table, percentiles of F' , T-24 
table, percentiles for 0 , T-26 
table, percentiles for 0', T-26 
table, percentage points of extreme studentized deviate from sample mean, T-30 
table, percentiles of the studentized range q , T-18 
table,  sample sizes required to detect prescribed differences in averages, sign of 

difference NOT important, T-16 
, sign of difference IS important, T-17 

table, weighting coefficients for probit analysis, T-32 
Statistical Computations 

(See Computations, Statistical) 
Statistical concepts, basic, 1-1, -19 
Statistical Inferences 

discussion, definition, and examples of, 1-3 
as estimates of magnitude of population characteristics, 1-3 
as tests of hypotheses regarding population characteristics, 1-3 

Statistical methods, inductive, 1-1 
Statistical Relationships 

(See also, Linear Relationships) 
between two variables 

problems and procedures for, 5-31 
SI relationships 

data sample, 5-33 
discussion and examples, 5-31 
estimating confidence band for line as a whole, 

procedure and example, 5-36 
table, computational arrangement for, 5-37 

confidence   interval   estimate   for  slope   of  true  regression  line,  procedure  and 
example, 5-38 
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Statistical Relationships  (cont) 
between two variables (cont) 

SI relationships  (cont) 
confidence  interval  estimate  for  single   (future)   value of  Y corresponding to 

chosen value of X , procedure and example, 5-38 
estimating confidence interval for single point on line, procedure and example, 

5-37 
confidence interval estimates for line as a whole, a point on the line, single Y 

corresponding to new value of X , 5-36 
figure showing the line and confidence limit for the line, using relationship be- 

tween two methods of estimating tread life, 5-35 
degree of relationship of X and Y as measured by correlation coefficient; proce- 

dure and example, 5-40 
procedure, best line for estimating Yr from given values of X, 5-33 

worksheet example, 5-34 
best line for predicting A'y from given values of Y , procedure and example, 5-39 
figure showing relationship between two methods of estimating tire tread life, 

5-32 
figure  showing two  regression lines, using relationship  between two  methods 

of estimating tread life, 5-39 
using regression line for prediction; using fitted line equation; and example of 

predicted values, 5-35 
SII relationships 

data sample, 5-40 
discussion, 5-40 
example worksheet, 5-41 
confidence band for line as a whole, procedure and example, 5-43 

table, computational arrangement and example calculations for, 5-44 
confidence interval estimates for: line as a whole; a point on the line; a single 

Y corresponding to new value of X , 5-42 
confidence interval for slope of true line, procedure and example, 5-45 
confidence interval for a single point on the line, procedure and example, 5-44 
confidence interval  for a single   (future)   value of Y corresponding to chosen 

value of X , procedure_and example, 5-45 
best line for estimating Yx from given value of X, procedure, 5-41 
figure showing relationship between two methods, range of one method restricted, 

5-42 
Statistical Techniques 

(See Extreme-value Data) 
Statistical Tests 

application to experimental results in making decisions, 3-1 
cautions concerning interpretations of data, 1-18 
use of OC curve to depict discriminatory power of, 3-2 
uses in testing for differences in average performance, discussion, 3-1 

Statistical Tolerance Limits 
(See Tolerance limits, Statistical) 

Statistics 
preliminary considerations, 1-1 
using to make decisions, 1-15 

Statistics, Inductive 
methods of, discussion, 1-2 
use  of inductive  methods to learn about population characteristics from study of 

samples, 1-2 
Stiehler, R. D., 5-46 
Stopwatches, life tests of three types, data sample, 16-13 
Studentized Range 

(See Range) 
Sutcliffe, M., T-55 
Swan, A. W., 9-10 
Sweeney, R. F., 14-8 
Switlyk, G., 14-8 
Symbols 

(See also: discussions, and the procedures and examples for specific topics of inter- 
est) 

definitions for m ,me, X , s , and a , 3-3 
Systems 

(See Linear Relationships) 
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Tables 
(See also, specific topic of interest) 
arrangement of A-Tables, discussion, T-l 
referenced A-Tables, T-l through T-89 
of random numbers, T-82 

example of use of, 1-6 
Rockwell hardness reading as first step in preparing a histogram, 1-7 
Tappi, 14-7 
Täte, M. W., T-80 
Taussky, 0., 6-42 
^-distribution, table of percentiles, T-5 
Techniques 

(See: Discussions of, in front of Sections 1 through 4; Distribution-free Techniques) 
Technometrics, 14-5, -6, -7 
Testing, Sensitivity 

(See, Sensitivity Testing) 
Tests 

(See also: Significance Level; Statistical Tests) 
of significance 

table, cumulative normal distribution, values of P , T-2 
table, cumulative normal distribution, values of zp, T-3 
table, minimum contrast required for significance in 2 x 2 tables with equal sam- 

ples, T-55 
table, percentiles of F distribution, T-6 
table, percentiles of t distribution, T-5 
table, percentiles of x~ distribution, T-4 

Tests, Distribution-free, 16-1 through 16-14 
discussion, general, 16-1 
comparing average of new product with a standard, 16-2 

data sample, 16-2 
does new differ from standard 

the sign test, 16-2 
procedure and example, 16-2 

the Wilcoxon signed-ranks test, 16-3 
procedure and example, 16-3 

does new exceed standard, 16-4 
data sample, 16-4 
the sign test, 16-4 

procedure and example, 16-4 
the Wilcoxon signed-ranks test, 16-5 

procedure and example, 16-5 
is new less than standard, 16-6 

data sample, 16-6 
the sign test, 16-6 

procedure and example, 16-6 
the Wilcoxon signed-ranks test, 16-7 

procedure and example, 16-7 
comparing averages of several products, 16-13 

do t products differ, 16-13 
data sample, 16-13 
procedure and example, 16-14 
work table for data sample, 16-13 

comparing averages of two products, 16-8 
discussion, general, 16-8 
does A differ from B , 16-8 

the sign test for paired observations, 16-8 
data sample, 16-8 

the Wilcoxon-Mann-Whitney test for two independent samples, 16-9 
data sample, 16-9 
procedure and example, 16-10 

does A exceed B , 16-10 
the sign test for paired observations, 16-11 

procedure and example, 16-11 
the Wilcoxon-Mann-Whitney test for two independent samples, 16-11 

data Sample, 16-11 
procedure and example, 16-12 
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Tests, Shortcut 
shortcut for small samples from normal populations, 15-1 through 15-8 
discussion, general, 15-1 
comparing average of new product with a standard, 15-1 

does new differ from standard, 15-1 
data sample, 15-1 
procedure and example, 15-2 

does new exceed standard, 15-2 
procedure and example, 15-2 

is new less than standard, 15-3 
procedure and example, 15-3 

comparing averages of several products, 15-6 
do t products differ, 15-6 

data Sample, 16-6 
procedure and example, 15-6 

comparing averages of two products, 15-4 
does A differ from B , 15-4 

data sample, 15-4 
procedure and example, 15-4 

does A exceed B , 15-5 
procedure and example, 15-5 

comparing variability of performance, 15-7 
does A differ from B , 15-7 

procedure and example, 15-7 
does A exceed B , 15-8 

procedure and example, 15-8 
Tests of Significance 

(See also: Confidence Intervals) 
and confidence intervals, relation between, 21-1 

introduction, discussion of, 21-1 
comparing averages, a problem in, 21-2 

figure showing OC curves for two-sided t-test (a = .05) , 21-3 
presenting results, two ways of, 21-2 

Thermometers, clinical, inspections and tests of, data sample, 9-2 
Thermometers, intercomparison of, data sample, 13-40 
S , ratio of variances, 3-28 
Thompson, John I. and Co., iii 
Tidwell, P. W., 14-8 
Tippett, L. H. C, 1-6, -11, -19; 20-13 
Tires 

estimated tread wear of, two methods, data sample, 5-33 
estimated tread wear of, 5-40 

Tolerance Limits 
(See also, Distribution-free Techniques) 
table, confidence associated with a statement of, T-77 
tables, one-sided distribution-free limits, T-76 
tables, two-sided distribution-free limits, T-75 
table, factors for normal distributions, T-14 
table, factors for normal distributions (two-sided), T-10 
engineering, definition of term, as different from confidence intervals and statistical 

tolerance limits, 1-15 
statistical 

basic concepts and examples, 1-14 
definition of term, as different from confidence intervals and engineering tolerance 

limits, 1-15 
two-sided and one-sided values, discussion of, 2-13 
figure showing computed limits for 99.7%  of population, with intervals tending 

to a fixed size as sample size increases, 1-14 
determining  one-sided  limits  with  stated  precision   (Xv or X,,) ,  procedure  and 

example, 2-14 
determining two-sided limits with  stated precision   (Xv and X,,) , procedure and 

example, 2-14 
determining  limits  independent of  form  of distribution   (distribution-free)-,  dis- 

cussion of methods, 2-15 
one-sided limits (distribution-free), procedure, 2-15 
two-sided limits (distribution-free), procedure, 2-15 
one-sided limits for normal distribution, discussion, 2-14 
two-sided limits for normal distribution, discussion, 2-13 
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Transformations 
table, arc sine for proportions, T-54 
of non-linear to linear relationships between two variables, 5-30 
use of, 20-1 through 20-13 

need for, discussion of, 20-1 
normality and normalizing: 

normality, importance of, 20-1 
normalization by averaging, 20-2 
normalizing transformations, 20-2 

figure showing examples of normalizing effect of frequently used transformations, 
20-3 

inequality of variances, variance-stabilizing transformations, 20-4 
equality of variances, importance of, 20-4 
linearity, additivity, and associated transformations, 20-9 

definition and importance of, 20-9 
remarks, concluding, 20-11 
transformation of data to achieve, 20-11 

variance inhomogeneity, types of, 20-5 
table showing some frequently used transformations, 20-5 

variance-stabilizing transformations, 20-6 
figure  showing  six  examples  of  variance-stabilizing  effect of frequently used 

transformations, 20-7 
Transistors, forward current transfer ratio of two types, data sample, 16-9 
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